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Abstract

The capturing of human movements is an important
step for the analysis of human skills, e.g. for sports
analysis or for learning-by-demonstration tasks. In
this paper we introduce a new markerless pose esti-
mation method which estimates human poses from sil-
houettes. The presented numerical pose estimation al-
gorithm adapts a non-deterministical annealing sched-
ule for silhouette based motion capturing. The pose
is estimated by numerically minimizing the differences
between the silhouettes of synthesized views of a 3D
avatar and the silhouettes of the real person in the cam-
era images. The evaluation results of simulation exper-
iments quantify the trade-off between the accuracy and
the execution time of the presented algorithm.

1. Introduction

The capturing of human movements is an impor-

tant step for the analysis of human skills [7]. Whereas

marker-based motion capturing technologies have tech-

nologically come to maturity and are successfully used

for the analysis of the movements of athletes, they have

the drawback that markers need to be attached to the

tracked person [8]. This requires special preparation

and modeling tasks. Moreover, the attached mark-

ers can influence the natural movements of the person.

Therefore there is a great need for markerless track-

ing technologies to overcome the limitations of marker-

based pose estimation [5].

In this work we introduce a new markerless pose

estimation method for multi-camera setups which esti-

mates human poses from silhouettes. The problem set-

ting is explained in section 2 and section 3 describes

our numerical pose estimation algorithm which solves

this pose estimation task. It adapts a simulated anneal-

ing schedule such that the differences between the real

silhouettes and the silhouettes of a 3D avatar are itera-

tively minimized in a probabilistic manner. Due to the

fact that the pose estimation algorithm is based on nu-

merical optimization, there is a trade-off between the

estimation accuracy and the required processing time.

This trade-off is quantified by the results of the simula-

tion experiments which are presented in section 4.

2. Silhouette-Based Pose Estimation

Our markerless motion capturing algorithm uses the

silhouette images from a calibrated multi-camera setup

for the pose estimation task. To calculate the silhou-

ettes, background images are captured before the user

enters the scene. Then the silhouettes of the person are

calculated with a kernel density estimation based back-

ground substraction [3]. The first two columns of figure

1 visualize a set of color images as well as the silhou-

ette images. Please note that the silhouette images were

downscaled from 640 · 480 pixel to 160 · 120 pixel to

speed up the pose estimation process.

Most previous approaches first reconstruct the 3D

shape of the person from the silhouettes and use the re-

constructed 3D shape for pose estimation [1][2]. How-

ever, in this paper we estimate the pose directly from

the silhouettes, thereby avoiding the costly 3D recon-

struction and 3D residual evaluation steps. We use an

articulated 3D model of a human for the pose estima-

tion and seek a configuration of joint angles such that

the silhouette of the projected 3D avatar corresponds as

well as possible to the real silhouettes. The third col-

umn of figure 1 visualizes a set of projections of the

3D avatar onto the camera images. Our avatar model

has 22 degrees of freedom, each of which is a joint an-

gle which needs to be estimated. An exhaustive search

is not possible due to the enormous size of the feasi-

ble configuration space: If n is the number of discrete
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(a) (b) (c) (d) (e)

Figure 1: (a) Color images (b) Silhouette images (resolution: 160 · 120 pixel) (c) Projected silhouettes of the vir-

tual avatar (resolution: 160 · 120 pixel) (d) Silhouette residual between the real silhouettes and the projected avatar

(resolution: 160 · 120 pixel) (e) Silhouette residual of simulation (resolution: 640 · 480 pixel)

values each joint angle can be set to (e.g. 180 if a rota-

tion from 0◦ to 180◦ is modeled in 1◦ steps), the search

space consists of n22 different joint rotations. Therefore

we use a numerical optimization method with the goal

to find a good approximation of the body pose within a

reasonable amount of processing time.

3. Numerical pose estimation

Many numerical optimization methods such as

downhill simplex methods or direction-set methods

have been proposed for multidimensional search spaces.

However, human pose estimation from camera images

is a problem with many local minima (e.g. sets of sil-

houettes from different poses which look similar al-

though the poses are quite different). Most numerical

optimiziation methods are prone to get stuck in local

minima rather than finding a solution which is close

to the global optimum. However, annealing methods

are able to find global extrema even in the presence of

many local extrema [6]. They were developed in anal-

ogy to natural thermodynamical cooling processes, e.g.

the cooling of metal: At the beginning the atoms move

very quickly and their mobility decreases steadily dur-

ing the cooling process. When metal cools slowly, the

atoms are redistributed during the cooling process such

that they line up in a state of minimal energy. This is not

the case if the metal is cooled too quickly. Annealing is

thus the process of a slow decrease of the energy state

of a system in order to find a global optimum.

As a numerical optimization method, annealing min-

imizes an objective function E(X) where X is the state

vector of the method E. In each step, a value of the state

vector is randomly changed. This change can either in-

crease or decrease the evaluated function value E(X).

Whereas many other numerical optimization algorithms

accept only ameliorations, annealing algorithms accept

a change from state Ei to Ei+1 with the probability

p = exp[−(Ei+1 − Ei)/kT ]. If Ei+1 < Ei, p is set to

1. This means that ameliorations are always accepted.

However, demeliorations are also accepted with a cer-

tain probability. This probability is set by the tempera-

ture T (which is steadily decreased during the annealing

process) and by the Boltzmann constant k which relates

temperature to energy. This probabilistic acceptance

function with its analogy to natural annealing is the core

of annealing algorithms as it helps to avoid getting stuck

in local minima. It was first introduced by Metropolis et

al. [4] and is based on the thermodynamic Boltzmann

probability distribution.
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3.1. Adapting Simulated Annealing for
Silhouette-Based Pose Optimization

We adapted the Simulated Annealing algorithm

specified in [6] for silhouette-based pose estimation. To

use this algorithm for pose estimation, the following al-

gorithmic components were defined:

1. The possible system configurations of the state

vector X: For pose estimation, these are the feasible de-

grees of freedom of the joint rotations (in our case the

22 rotation angles).

2. A generator of random changes: To test a new

pose, the algorithm either sets one of the joints to a ran-

dom value or slightly changes one of the joint rotations.

3. An objective function E(X) which is minimized

by the Annealing algorithm: We seek to minimize the

differences between the real and the artificial silhou-

ettes. The real and the synthetic images are compared

pixel by pixel to calculate the silhouette residual defined

in equation 1. For a real silhouette image r and a synthe-

sized silhouette image s we define the silhouette resid-

ual by:

∑

x,y
(rx,y · sx,y == 0)

∑

x,y
(rx,y · sx,y == 0) +

∑

x,y
(rx,y · sx,y == 1)

(1)

where rx,y is the binary value of the pixel at position

(x,y) in the real silhouette image and sx,y is the binary

value of the pixel at position (x,y) in the synthesized

silhouette image. The binary value of a pixel is 1 if

it is a silhouette pixel and its value is 0 if the pixel is

a background pixel. The last two columns of figure 1

visualize the silhouette residual: The residual (which

consists of the dark gray and black pixels) is minimized

to maximize the (bright gray) overlapping area of both

silhouettes.

4. An annealing schedule which tells how the tem-

perature decreases and how many possible poses are

tested per temperature step: In each temperature step

the temperature is decreased by the factor 0.9. Further-

more we use two parameters (nover and nlimit) to trade

off between accuracy and calculation time: In each tem-

perature step a maximum of nover · 22 poses are eval-

uated (there are 22 estimated joint angles and thus 22

degrees of freedom). The parameter nlimit sets the

convergence criterion for the Simulated Annealing al-

gorithm: If more than nlimit · 22 changes are accepted

within a temperature step, the algorithm continues with

the next temperature step. If less than 0.2 · nlimit · 22
changes are accepted in a temperature step, the algo-

rithm finished (this is the convergence criterion).

4. Results

The experiments were conducted on an 3.07 GHz In-

tel Core i7 with an NVIDIA GeForce GTX 470. Our

camera setup consists of four Firewire cameras which

have a resolution of 640 · 480 pixel. The cameras

are located in the corners of a room which measures

8m · 4m. To quantitatively evaluate the pose estimation

algorithms with ground truth data we used the calibrated

extrinsic and intrinsic parameters of the real cameras to

generate synthesized camera images for the evaluation.

We then compared the positions of the head, shoulders,

elbows, hands, hip, knees and feet of the reference and

the calculated body poses (the positional residual).

Figure 2: Silhouette residuals (black) and positional

residuals (red) of the Simulated Annealing algorithm.

Silhouette residual: y-value = residual as defined in

equation 1. Positional residual: y-value = cm.

The Simulated Annealing algorithm can not directly

evaluate the positional residuals of the body because

these cannot be observed directly (except during a sim-

ulation). Thus it has to rely on the pixelwise silhou-

ette residuals to estimate the accuracy of the calculated

pose. Figure 2 visualizes the residuals of the body pose

(red) during the minimization of the silhouette residuals

(black) for a single run of the parameter set (640 · 480,

nover = 10, nlimit = 5). Whereas an improvement

of the silhouette residual does not always improve the

real pose (e.g. at the 48th found silhouette residual the

average body pose residual increases from 13.8cm to

16.4cm), finally the body pose converges to a good ap-

proximation of the real pose. The right column of figure

1 visualizes (from top to bottom) the silhouette residu-

als number 0, 60, 120 and 180 of figure 2.

Table 1 shows the performance of the presented al-

gorithm in terms of accuracy and execution time. For

each parameter set (image size, nover and nlimit) the

execution time was calculated by averaging ten execu-
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Table 1: Simulated Annealing: Average execution time and pose estimation accuracy

Image size nover nlimit Max. tests per

temp. step

Execution

time

Temperature

steps

Silhouette

residual

Positional residual

640 · 480 2 1 44 15.55s 32 0.2180 11.53 cm

320 · 240 2 1 44 6.79s 28 0.2368 11.92 cm

160 · 120 2 1 44 6.26s 22 0.2582 14.06 cm

80 · 60 2 1 44 5.50s 21 0.2833 16.15 cm

640 · 480 5 2 110 42.79s 31 0.1724 7.32 cm

320 · 240 5 2 110 15.24s 30 0.1878 7.20 cm

160 · 120 5 2 110 11.83s 22 0.2113 9.46 cm

80 · 60 5 2 110 9.62s 13 0.2407 13.56 cm

640 · 480 10 5 220 69.17s 25 0.1322 3.54 cm

320 · 240 10 5 220 31.28s 22 0.1635 5.96 cm

160 · 120 10 5 220 24.68s 18 0.1873 7.67 cm

80 · 60 10 5 220 17.13s 14 0.2369 12.17 cm

640 · 480 50 5 1100 1022.20s 74 0.0941 2.30 cm

320 · 240 50 5 1100 567.65s 74 0.1105 2.78 cm

160 · 120 50 5 1100 430.81s 74 0.1458 3.74 cm

80 · 60 50 5 1100 311.35s 74 0.1974 9.80 cm

tions of the algorithm with the specified parameters. In

each temperature step a maximum of nover · 22 poses

were evaluated (there are 22 estimated joint angles and

thus 22 degrees of freedom). If more than nlimit · 22
changes were accepted within a temperature step, the

algorithm continued with the next temperature step. If

less than 0.2 · nlimit · 22 changes were accepted in a

temperature step, the algorithm finished (convergence

criterion). The column ”temperature steps” shows after

how many temperature steps this convergence criterion

was reached. This value is identical for the last four pa-

rameter sets because for these sets the convergence cri-

terion was only reached as soon as the temperature had

decreased to 0. The last column shows the positional

residual. The accuracy of the estimated pose increases

with the number of tested poses, so the parameters for

the pose estimation can be chosen such that they trade

off between the processing time and the required accu-

racy.
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