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Abstract. The emergence of paraffin-coated rice in China, aimed at enhancing its market appeal and 

achieving a translucent appearance, has given rise to a significant global food safety concern. This situation 

poses substantial health risks to consumers. Hyperspectral analysis, recognized as a powerful and 

nondestructive technique for assessing food quality and safety, offers a potential solution. This study 

conducted a comprehensive investigation using Visible-Near Infrared (VIS-NIR) hyperspectral imaging 

systems operating within the 400-1000 nm range to identify paraffin-contaminated rice. Various rice 

varieties from diverse regions were obtained and intentionally tainted with varying levels of paraffin. Imaged 

samples were further preprocessed for spectral data extraction from individual rice seeds' regions of interest 

(ROI). The dataset encompassed 3000 spectral records obtained from both non-contaminated and 

contaminated samples. The obtained spectral data were employed to develop partial least squares 

discriminant analysis (PLS-DA) and principal component linear discriminant analysis. The primary goal 

was to discriminate between contaminated and non-contaminated rice samples effectively. Notably, the 

results indicated that PLS-DA consistently achieved an accuracy exceeding 94% across various 

preprocessing techniques. Overall, this study showcased the potential of combining hyperspectral imaging 

with chemometrics to detect paraffin-contaminated rice seeds, providing a valuable contribution to food 

safety assessment in the industry. 
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1 Introduction 

Rice (Oryza sativa L.) has stood as a cornerstone in 

feeding a substantial fraction of the world's inhabitants. 

About half of the global populace depends on rice as a 

central source of sustenance. Across numerous nations, 

especially in Asia, rice holds a pivotal role in diets, 

serving as a fundamental nutritional element [1]. The 

adulteration of food products is a deceptive practice 

involving substituting high-cost ingredients with lower-

grade and cheaper substitutes [2]. In recent years, rice 

adulteration has emerged as a significant concern, 

drawing attention from regulatory agencies, suppliers, 

and consumers alike. This adulteration trend is 

particularly prevalent in Chinese rice production and 

consumption, which was recently reported [3]. Notably, 

paraffin, an industrial wax, has become a central 

element in adulterating rice, leading to the alarming 

emergence of "Toxic rice." This practice involves 

treating rice with chemicals and applying a paraffin 

coating to enhance its visual appeal and marketability, 

resulting in a desirable translucent appearance. 

However, the consequences of consuming this 

adulterated rice are far from desirable, as it contains 

carcinogens [4] that pose serious health risks. Detecting 

adulterated rice contaminated with industrial paraffin is 

challenging due to the deceptive nature of its 

appearance. Current identification methods often rely on 

subjective factors, such as visual cues like color and 

texture, or more advanced physical and chemical tests 

like GC-MS [5], [6]. However, these methods offer 

higher precision; they are labor-intensive and require 

extensive separation and extraction of paraffins before 

qualitative and quantitative analysis can be performed.  

In response to the challenges posed by traditional 

detection methods, emerging technologies such as 

hyperspectral imaging have gained attention. 

Hyperspectral imaging has emerged as a powerful and 

innovative tool for agricultural product quality 

inspection, which combines traditional imaging with 

spectral analysis, enabling the acquisition of extensive 

data on the surface and internal characteristics of 

measured samples. This technology has been widely 

utilized in nondestructive testing for adulterated food 

products, including grains, fruits, and vegetables [7]. 

For example, color adulterant in red chili [8], fraud 

detection in meat [9], and adulterated almond powder 

with apricots and peanuts [10]. Further, hyperspectral 

imaging demonstrated high potential for qualitative and 

quantitative analysis of agriculture crops, for instance, 

the determination of chemical contents of water and 
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tuber flour [11], prediction of anthocyanins in black rice 

[12], assessments of internal defects in macadamia [13] 

and quality analysis of stored bell peppers [14]. 

In this study, we capitalize on the capabilities of 

hyperspectral imaging technology to address the 

challenges posed by conventional detection methods in 

identifying adulterated rice. The utilization of 

hyperspectral imaging in detecting adulterated rice can 

enhance the efficiency of detection processes and ensure 

consumer protection from the health risks associated 

with consuming toxic rice. This study's Specific goal 

was to develop a system for nondestructive quality 

inspection of contaminated rice. The obtained results 

from this research could have broader implications for 

the application of hyperspectral imaging in ensuring the 

authenticity and quality of various food products. 

2 Materials and Methods 

2.1 Sample preparation 

Three varieties of uncontaminated rice samples were 

prepared from the local market, while the paraffin liquid 

was purchased from authentic companies in South 

Korea. Contaminated rice was made deliberately by 

adding paraffin to the uncontaminated rice. Six 

contamination concentration were used 0, 1, 2, 3, 4, and 

5 %w/w. A total of 50 g contaminated rice were made 

for each concentration. After the paraffin liquid were 

added to the rice, the mixture were shaken using vortex 

mixer for around 5 minutes each. Every samples were 

kept in the room temperature to equilibrate before 

spectra measurement. 

2.2  System development  

 

Fig. 1. Schematic representation of imaging system and 

components. 

A line-scan hyperspectral imaging (HSI) technique was 

employed to assess contaminated rice non-destructively. 

During measurement, rice sample were placed on a 

10x10 cm black plate. The system ranged the visible to 

near-infrared range from 400 to 1000 nm. The critical 

elements of the imaging setup, as depicted in Figure 1, 

consisted of a line-scan spectrograph provided by 

Headwall Photonics (Fitchburg, MA, U.S.A.), a c-

mount objective lens from Schneider Optics 

(Hauppauge, NY, U.S.A.) with specifications of F/1.9 

and 35mm, and an electron-multiplying charge-coupled 

device (EMCCD) camera, model MegaLuca R, 

manufactured by ANDOR Technology (South Windsor, 

CT, USA). The camera featured 1,004 spatial × 1,002 

spectral pixels and operated at a maximum pixel-readout 

rate of 12.5 MHz. The entire system was equipped with 

a thermoelectric cooling mechanism, maintaining a 

temperature of -20 °C. The lighting setup comprised six 

100 W halogen light sources (LS-F100HS) connected 

via optical fiber, and a stepper motor was coordinated 

with the camera's movements using custom software.  

mage processing and analysis 3 I

Samples were imaged using hyperspectral imaging, and 

the initial hyperspectral images were converted to 

corresponding reflectance images to eliminate undesired 

noise stemming from both instruments and external 

sources of light; equation (1) was employed. Mainly, the 

correction procedure aimed to standardize the light 

distribution and generate images reflecting actual 

reflectance levels. A Teflon tile with an approximate 

reflectance of 99% was utilized to capture the white 

reference under the same lighting arrangement as the 

sample images. On the other hand, the dark reference 

was obtained by covering the lens with an opaque cap, 

resulting in a reflectance of approximately 0%, while the 

illumination unit was turned off. The refined images, 

denoted as Xcal, were computed by applying the 

formula to the measured raw hyperspectral image 

(Xraw), the white reference (Xwhite), and the dark 

reference (Xdark). 

𝑋𝑐𝑎𝑙 =
𝑋𝑟𝑎𝑤−𝑋𝑑𝑎𝑟𝑘

𝑋𝑟𝑒𝑓−𝑋𝑑𝑎𝑟𝑘
                  (1) 

The background was removed from the rectified 

hyperspectral images by utilizing the mean reflectance 

of both the background pixels and the pixels 

corresponding to plant rice samples. This procedure 

aimed to eliminate irregular intensity and fluctuations in 

the background. Subsequently, the adjusted 

hyperspectral image was employed to extract spectral 

data from the ROI of the individual seed samples.  

 Data analysis 4

 4.1 Spectral extraction and correction

After removing the background, calibrated 

hyperspectral images were utilized to extract spectral 

insights within specific areas of interest (ROIs) across 

the entire range of the spectra (VIS-NIR: 400-1000 nm) 
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for rice seed samples. The average spectrum for each 

seed from the ROIs of 1,500 non-contaminated and 

1,500 contaminated seeds and further analysis dataset 

was divided into 70% for calibration and 30% for 

validation. The acquired raw spectral data contained 

random noise that resulted from variations in light 

direction and scattered light produced by the equipment. 

Consequently, preprocessing the spectral data was 

necessary to eliminate unwanted spectral fluctuations 

and unveil the valuable information within the plants. 

This study employed multiple preprocessing techniques, 

including standard normal variate (SNV), multiplicative 

scatter correction (MSC), smoothing, and the Savitzky–

Golay first and second derivatives approach. Detailed 

information regarding each preprocessing method can 

be found in published reports [15]. Figure 2 (a) displays 

the initial preprocessing of raw spectral data, whereas 

Figure 2 (b) depicts the data after undergoing raw and 

SNV preprocessing and shows apparent differences 

between preprocessed and raw spectral data. Notably, 

the higher performed preprocessing was further 

highlighted for further analysis. 

 Model Development  4.2

Processed spectral data were utilized to develop distinct 

models of principle component analysis combined with 

linear discrimination analysis (PCA-LDA) and partial 

least square discrimination analysis (PLS-DA). The 

spectral data were divided into 2000 (1000 

contaminated and 1000 non-contaminated) spectral data 

for calibration and  1000 (500 contaminated and 500 

non-contaminated) for validation, all derived from raw 

preprocessed spectral data. 

PCA-LDA analysis, a statistical technique, 

synergistically merges principal component analysis 

(PCA) and linear discriminant analysis (LDA) to 

analyze intricate datasets. PCA effectively diminishes 

the dimensionality of high-dimensional data by 

identifying inherent patterns and correlations. Data is 

repositioned Through this transformation into a new 

coordinate system where the first principal component 

captures the most variance, and the subsequent 

components decrease variance. This dimensionality 

reduction serves to simplify data analysis. Conversely, 

LDA pinpoints the linear amalgamation of features that 

distinctly classify predefined groups or classes within 

the dataset. It achieves this by optimizing between-class 

variance while minimizing within-class variance. In the 

PCA-LDA analysis process, PCA takes precedence by 

initially reducing data dimensionality by identifying 

critical patterns and correlations. The altered data then 

undergoes LDA to determine the optimal linear 

amalgamation of features for effectively segregating the 

data into predefined groups or classes. Combining these 

two techniques in PCA-LDA enhances the precision of 

data classification by reducing dimensionality and 

enhancing data distinctiveness. 

Furthermore, we have developed a PLS-DA model, 

a modified version of partial least square regression 

(PLS-R). PLS-DA is specifically designed for situations 

where the goal is to classify data points into different 

classes or categories based on their features. In PLS-DA, 

the method adapts the principles of PLS to classification 

problems. It constructs a linear relationship between the 

predictor variables (independent variables) and a set of 

dummy variables representing the class labels 

(dependent variables). The goal is to find latent 

variables that maximize the covariance between 

predictor variables and class labels and optimize class 

separation. Further information and implementation on 

the NIR spectral data can be found in previously 

published reports [16].  

4.3  Models performance evaluation  

The analysis was adapted to encompass two distinct 

groups of rice seeds: non-contaminated and 

contaminated samples. The evaluation process focused 

on the performance assessment of the PCA-LDA and 

PLS-DA models. Essential metrics, including 

sensitivity, specificity, precision, accuracy, and error 

rate, were computed using equations (2 to 6) derived 

from the confusion matrix. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝑇𝑃

𝑇𝑃+𝐹𝑁 
) ∗ 100    (2) 

 

 Fig. 2. Plots show (a) raw spectral data and (b) preprocessed spectral data.  
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Sensitivity, as expressed in Equation (2), delineated 

the models' efficacy in correctly identifying samples 

belonging to the contaminated group. This metric 

gauged the models' ability to discern actual positive 

cases while mitigating false negatives. Sensitivity 

served as a vital indicator of the models' capacity to 

accurately spot actual instances of contamination within 

the rice seed samples. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (
𝑇𝑁

𝐹𝑃+𝑇𝑁 
) ∗ 100                    (3) 

Equation (3) specificity measures parameter 

highlighted the models' adeptness in correctly 

recognizing true negatives while minimizing instances 

of false positives. Specificity provided insights into the 

models' capability to label negative cases accurately. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑇𝑃

𝑇𝑃+𝐹𝑃 
) ∗ 100                   (4) 

Precision, outlined in Equation (4), assessed the 

models' precision in accurately predicting the number of 

accurate optimistic predictions within the contaminated 

group. It illuminated the models' accuracy in identifying 

contaminated instances among the predicted positives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁 
) ∗ 100  (5) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
) ∗ 100  (6) 

Furthermore, the overall effectiveness of the models' 

classification was encapsulated by accuracy, denoted by 

Equation (5). Accuracy presented a comprehensive view 

of how well the models correctly categorized non-

contaminated and contaminated rice seed samples. 

Conversely, the error rate, calculated using Equation (6), 

examined the models' classification performance by 

quantifying the proportion of inaccurately assigned 

samples concerning the total number of samples. 

The terms are defined as follows: True Positive (TP) 

represented the instances where contaminated rice seeds 

were correctly identified as such. It corresponded to a 

positive response for an actual positive instance. False 

Positive (FP) indicated cases where non-contaminated 

rice seeds were wrongly classified as contaminated. It 

corresponded to a positive response for a negative 

instance. True Negative (TN) denoted the accurate 

recognition of non-contaminated rice seeds. It 

corresponded to a negative response for an actual 

negative instance. False Negative (FN) encompassed 

instances where contaminated rice seeds were 

erroneously identified as non-contaminated. It 

corresponded to a negative response for a favorable 

instance. The adapted analysis delved into the 

performance evaluation of the PCA-LDA and PLS-DA 

models, employing these metrics to comprehensively 

assess their accuracy in classifying non-contaminated 

and contaminated rice seed samples. 

 Results and Discussions 5

  Spectral information of rice samples  5.1

Figure 3 (a) presents the raw mean spectral data and (b) 

demonstrates the SNV preprocessed of contaminated 

rice samples. The mean spectral shows an apparent 

difference between contaminated and non-contaminated 

spectra, in which the contaminated samples show lower 

intensity due to absorbing more light, and the non-

contaminated spectra show higher intensity. 

Contaminated rice absorbs more light might due to 

presence of hydrocarbon bonds in parrafin [17]. 

However, both contaminated and non-contaminated 

spectral patterns demonstrated a similar pattern, and 

slight changes appear between 448-507 nm and 903-932 

nm. 

 PCA-LDA and PLS-DA results 5.2

The PCA-LDA and PLS-DA models' effectiveness in 

classifying contaminated and non-contaminated rice 

samples into two classes was appraised using different 

preprocessing methods on spectral data. Nevertheless, 

the accuracy of the PCA-LDA and PLS-DA models 

varied based on the chosen preprocessing approach. The 

PCA-LDA and PLS-DA methods consistently 

demonstrated the lowest root mean square error of cross-

validation (RMECV) for each preprocessing technique. 

To identify the optimal preprocessing methods, the ones 

resulting in the minimum RMSECV and the most 

appropriate number of latent variables (LVs) were 

chosen. The number of LVs was determined through a 

10-fold cross-validation process. The results from the 

models are summarized in Table 1, depicting the 

calibration and prediction outcomes. The raw and range 

normalization  (RN) preprocessing yielded enhanced 

accuracy across all models, including PCA-LDA and 

PLS-DA.  

Comparing the performance of PCA-LDA and PLS-

DA models, it becomes evident that they both achieved 

commendable levels of accuracy. However, the 

outcomes presented in Table 1, where these analysis 

methods were compared against highly effective 

preprocessing techniques, reveal distinct patterns. PCA-

LDA displayed varying prediction set accuracies, 

ranging from 90% to 77%, and an elevated error rate 

surpassing 22%. In contrast, leveraging range 

normalization, PLS-DA showcased the highest 

accuracy, reaching 94.10% in the prediction set and a 

meager error rate of 5.9%. The classification outcomes 

of PLSDA for contaminated and non-contaminated rice 

samples, based on the application of range 

normalization, are visually depicted in Figure (4). 
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Fig. 3. Raw and preprocessed spectral data of contaminated and non-contaminated samples.  

 

Table 1 summarizes the analysis results of the PCA-LDA and PLS-DA models.   

 

Fig. 4. PLS-DA classification analysis results (a) calibration and (b) validation, respectively.  

Furthermore, to present a comprehensive overview 

of the outcomes for each class, confusion matrices were 

generated for the most effective models, as illustrated in 

Figure 5. The two axes of the matrices encompassed two 

categories: contaminated and non-contaminated 

samples. The labels assigned by the model were 

represented on the horizontal axis, while the vertical 

axis depicted the actual data labels. In particular, Figure 

5 encompassed three subfigures: (a) showcasing the 

calibration results and (b) displaying the validation 

outcomes. These matrices pertained to the performance 

of the PLS-DA model, which employed range-

normalization preprocessing, highlighting its 

remarkable achievements.  

The confusion matrices illustrated a situation where 

a slightly higher number of contaminated samples were 

inaccurately classified as non-contaminated, and a small 

number of non-contaminated samples were 

misclassified as contaminated and showed the model 

error rate. Additionally, in multivariate analysis, the 

resulated beta coefficient from the models reveals the 

connection between each composition's absorption and 

specific spectral bands. Its importance stems from 

assisting in selecting informative wavelengths and 

simplifying the interpretation of outcomes. Figure (6) 

displays the derived PLS-DA beta coefficient using the 

raw spectral data, showcasing the contaminated and 

non-contaminated spectral insights linked to rice 

samples.  

 Calibration set (1500) Prediction set (1000) 

Models Sen Spec Pre Acc E-rate Sen Spec Pre Acc E-rate 

 

PCA-

LDA 

Raw 92.40 92.40 92.42 92.40 7.60 90.10 90.10 90.24 90.10 9.90 

SNV 79.45 79.45 79.62 79.45 20.55 77.80 77.80 77.80 77.80 22.20 

RN 86.60 86.60 86.62 86.60 13.40 83.60 83.60 83.78 83.60 16.40 

 

PLS-DA 

Raw 94.90 94.90 94.90 94.90 5.10 93.50 93.50 93.54 93.50 6.50 

SNV 88.80 88.80 88.82 88.80 11.20 88.00 88.00 88.00 88.00 12.00 

RN 94.95 94.95 94.95 94.95 5.05 94.10 94.10 94.11 94.10 5.90 

Calibration Classification Plot Validation Classification Plot 
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Fig. 5. Confusion matrices analysis of calibration and validation set.  

 

Fig. 6. Beta coefficient of the calibration model 

The absorbed energy causes bonds to vibrate and 

stretch, leading to characteristic absorption bands in the 

VNIR spectrum. The energy levels associated with C-H, 

O-H, and N-H bonds align well with the energy range of 

VNIR light, making these regions particularly 

informative for analysis. The C-H bonds are prevalent 

in organic compounds, including fats, oils, 

carbohydrates, and proteins [18]. The O-H bonds are 

commonly found in water and various functional groups 

like alcohols and phenols [19]. Similarly, N-H bonds are 

present in molecules such as amino acids and proteins. 

As a result, VIS-NIR spectroscopy can be used to detect, 

quantify, and characterize a wide range of organic 

compounds based on their unique spectral signatures in 

the VNIR region. Within the spectral range 

encompassing VNIR wavelengths (400 to 1000 nm), we 

encountered spectra containing vital chemical details of 

rice constituents. These constituents include 

carbohydrates, proteins, amylose, and moisture, all of 

which correspond to the third overtone absorption of C–

H bonds at 880 nm, as well as the second overtone 

absorption of O–H bonds in the range of 750 to 900 nm 

and N–H bonds spanning from 962 to 1000 nm  [20], 

[21]. 

Furthermore, the amide bonds in proteins can cause 

absorption bands in the 600-900 nm range (Nirmal 

Thirunavookarasu, 2022). Amino acids have specific 

absorption features around 950 nm [22]. Starch and 

carbohydrates may contribute to absorption bands in the 

800-1000 nm region due to their molecular vibrations 

[23]. Water absorption is significant in the 900-1000 nm 

range [24].   

 Conclusion 6

In conclusion, this study focused on applying 

hyperspectral imaging combined with chemometric 

analysis to detect paraffin-contaminated rice seeds, 

addressing a pressing food safety concern. The 

emergence of paraffin-coated rice in the market has 

6

BIO Web of Conferences 80, 01001 (2023)   https://doi.org/10.1051/bioconf/20238001001
ICoSIA 2023

mailto:chobk@cnu.ac.kr


 

raised alarms due to potential health risks, making the 

need for reliable detection methods crucial. Moreover, 

employed Visible-Near Infrared (VIS-NIR) 

hyperspectral imaging and advanced analytical 

techniques showcased promising results. Through a 

meticulous investigation involving different rice 

varieties from diverse regions contaminated with 

varying levels of paraffin, the study employed Partial 

Least Squares Discriminant Analysis (PLS-DA) and 

Principal Component Analysis Linear Discriminant 

Analysis (PCA-LDA) models for classification. The 

effectiveness of these models was evaluated using 

different preprocessing methods on the spectral data, 

including raw data, standard normal variate (SNV) 

transformation, and range normalization (RN). The 

results highlighted the potential of both PCA-LDA and 

PLS-DA models in accurately classifying contaminated 

and non-contaminated rice samples. However, a 

comparative analysis demonstrated that PLS-DA 

exhibited superior performance, especially with range 

normalization preprocessing. This preprocessing 

approach consistently yielded high accuracy rates, 

reaching 94.10% in the prediction set, with a minimal % 

error rate of 5.9%. At the same time, while generally 

accurate, PCA-LDA showed more variability in 

accuracy, ranging from 90% to 77%, and a higher error 

rate exceeding 22% based on different preprocessing 

techniques. This research underscores the potential of 

hyperspectral imaging and chemometric approaches, 

particularly PLS-DA with range normalization 

preprocessing, as a viable solution for detecting 

paraffin-contaminated rice. Furthermore, the study's 

findings contribute significantly to the field of food 

safety assessment, providing a valuable tool for the 

industry to ensure the quality and safety of rice products 

in the market. With the potential for further 

advancement, refinements in spectral data extraction 

and classification methodologies could enhance 

detection accuracy, making such techniques even more 

robust and reliable for real-world applications.  
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