A Review on Microencapsulation as Method of Drug Delivery

Abstract

Microencapsulation can be described as heavy, fluid or gaseous substance packaging engineering with thin polymeric coatings, creating small particles called microcapsules. Microencapsulation is very helpful to increase the solubility of drugs. For the drugs of BCS Class II we use this technique which enables us to get more solubility and increase dissolution profile. This is a novel method of drug delivery. In future aspect we can use this technique in the food industry, beverages. A microencapsulation approach for the preparation of an intrauterine contraceptive system was also suggested. This technique is helpful to overcome poor solubility, low Bioavailability and less stability. This method also gives more control over the drawback of conventional dosage forms.

Keywords: Microencapsulation, Bioavailability, Solubility, Novel Drug Delivery

1 Introduction

Microencapsulation is characterized in a dormant shell is a system of encasing covering micron extend strong particles or beads of fluid or gasses, which as a result concentrate and jam them from the outside world (Silva et al., 2014). It is classified as microparticles, microcapsules or microspheres when the particle size is below 1 mm as nanoparticles, nano-capsules, nanospheres, and particles with a diameter of 3–800 mm. Particles in excess of 1000 mm are classified as macroparticles (Wen et al., 2014).

There are two elements of microparticles or microcapsules, namely base layer and cover or shield content. Core content requires an active ingredient when coating or securing the core material is the paint or hell material. Different substances such as active drug additives, hormones, peptides, reactive fats, meat products, pigments, paints, etc. may be embedded with various kinds of covering or shell materials such as ethylcellulose (EC), (HPMC), (Na CMC), (PLGA), polyester, chitosan, etc. (Iwamoto et al., 2016).

1.1 Microencapsulation history

In the late 1930s, Barry Green, a research chemist at Dayton's National Cash Register Company, began to explore how the principle of microencapsulation could possibly be used in copying documents. If dye specks could be covered with a special fusible coating that would form a microcapsule, the use of ink could be much less messy and more effective. The possibilities of regulating the release of an active ingredient by encapsulating it had long fascinated scientists. Microencapsulation was straightforward in theory, in fact, it was extremely difficult to get the right conditions. Green's invention would become the cornerstone of the software that creates documents from copiers and printers. Microencapsulation is essential to many other developments today, including pesticides and pharmaceuticals that have been released over time (Takk et al., 1999).

Until xerography, a clerk often used multipage forms interlaced with carbon paper to make copies of a file. Such packages were somewhat messy because users had to remove the carbon-paper pages and then dump them. It was often a struggle to read the last copy in a row. In 1942, Green had developed a working method for Lowell Schleicher Microencapsulating ink and carbon-free paper model. He collaborated with Thomas Busch of Appleton Coated Paper in Appleton, Wisconsin, on the difficult process of applying microcapsules to paper in a thin, porous layer over the next twelve years.

The material had three layers: the paper; a film of microcapsulated acid-sensitive dye; and a sheet of acid clay to transform the dye from translucent to dark blue or black. Pressure from a writing tool broke the dye microcapsules on each sheet’s underside (except the last one); when the dye was released, it reacted on the next sheet’s surface with the acid layer. Significant effort was made to model capsule walls that were adequately...
durable to survive storage but would crack under pencil stress. Green used gelatin, a substance composed of long chains of chemically bound amino acids, to harden the cell walls. Once gelatin is handled with a reactive chemical such as formaldehyde, glutaraldehyde, or tannic acid, the chains form new chemical relations. The effect is a three-dimensional network called a cross-linked gelatin that is thicker and less elastic than normal gelatin, resulting in a stronger and more stable microcapsule.

The dye was dissolved in a fast-boiling organic solvent in order to make the microcapsules, and the resultant mixture was mixed at high speed in the presence of gelatin and gum arabic in liquid. The oily coloring solution was formed because of the intense agitation. A dispersion in the water layer of fine droplets. Changing the water solution's acidity made gelatin and gum less soluble, causing them to precipitate on droplets in the form of a coating. Formaldehyde strengthened the coatings and isolated and removed the resultant microcapsules from the solution. Meanwhile, microencapsulation made possible another technology that has forever altered office procedures within a few years of the introduction of carbonless carbon paper. In the late 1940s, an engineer called Chester Carlson helped the Rochester Haloid Corporation, New York, sell a new copying technique, known as xerography, and a dry photocopying process using microencapsulated coloring toner. With the launch of the groundbreaking Xerox 914, the development work ended in 1959. While being bulky and requiring constant attention, this computer made it possible to create faithful copies of practically any document for the first time without resorting to messy wet processes.

Microencapsulation can be performed for:

- shielding of fragile materials from the outside world.
- masking of organoleptic characteristics of the material such as color, taste, odor.
- product material-controlled release.
- safely handling of toxic substances.
- medicines targeted release can be achieved.
- reduce harmful drug effects such as abdominal discomfort, e.g. aspirin medication helps to eliminate irritation in the abdominal region.

1.2 Formulation dimensions of microencapsulation

1.2.1 Capsules

It can usually be categorized as macrocapsules (> 5,000μm), microcapsules (0.2 to 5,000μm) and nanocapsules (<0.2μm) according to their volume. It can be classified into two classes in terms of form and construction:

- capsules
- microspheres.

Microencapsules are the molecules that comprise of an inside core, predominantly central, comprising the API protected by a sheet of polymer which forms the membrane of the capsule. It is possible to distinguish between mononuclear and polynuclear microcapsules whether the heart is separated.

On the other hand, microspheres is a matrix framework in which the core of a polymer network is scattered and/or uniformly dissolved.

1.2.2 Materials of the wall

Divider materials are basic to pick appropriately because they influence the proficiency and soundness of the microcapsule. The perfect dividers ought to have:

- the non-receptive nature of the center;
- the capacity to screen and hold the center inside the case;
- the possibility for the core to be maximized for protection from adverse conditions;
- the absence of an uncomfortable taste for food applicability and economic viability.

Most walls have not all the required characteristics; it is common practice to mix more than one substance. These products are picked from a various source of polymers i.e natural and synthetic, some of them are:

- Carbohydrates: sugar, refined starch, dextrins, sucrose, cellulose and chitosan;
- gums: arabic gum, alginate and carrageenan;
- Lipids: gelatin, paraffin, monoglycerides and diglycerides, hydrogenated oils and fats;
- Inorganic substances: calcium sulfate and silicates;
- proteins: carbon, paraffin and diglycerides;
- Inorganic materials: sulfate for calcium and silicates; sugar, casein, gelatin and albumin proteins (Nakagawa, K., et.al; 2004).
1.2.3 Core release in a controlled manner

It should allow separates the core material from outside environment until it is required to be released. Release is the most vital property at the right time and place in the encapsulation phase, increasing performance, reducing the necessary dosage of additives, and extending the use of interesting compounds. The major factors influencing the released levels are the connections between the substance of the wall and the core. In addition, certain factors affect the launch, such as core instability, core-wall content proportion, particle volume, and wall surface viscosity level. Diffusion, oxidation, solvent usage, pH, temperature and pressure are the key processes involved in the central launch. A variation of more than one process is being used in action.

Diffusion happens when the wall of the microcapsule is unchanged; releasing frequency is controlled with the core material and wall material's chemical properties also with some of the wall's physical properties. For example, during a process stage, certain acids can be released but covered with something else. In some situations, certain preservatives are available on the material surface. Nonetheless, it is needed to control their distribution to other sections (Rocha-Selmi et al., 2013).

Degradation release happens as protease and lipase enzymes, respectively, destroy proteins or lipids. An instance is a 50 percent reduction in the time required to mature cheddar cheese relative to the traditional maturing process (Gu et al., 2016).

The wall content may melt entirely in contact with a solvent, releasing the core rapidly or starting to extend, preferring escape. For example, when in a dry state, microencapsulation of coffee flavors increases safety from illumination, temperature, and oxidation, but the core is released after liquid interaction. The release of pH happens as shifts in pH will contribute to improvements in the solubility of the wall surface, which triggers the core release. The microorganisms that are probiotic can example which encapsulated to prevent acidic pH in the stomach and released specifically to the basic pH of the intestinal region.

Changes in Temperature will stimulate release of the core. The two distinct concepts are: heat-sensitive release, used for substances that extend or crumble when a crucial temperature is reaching, and also activated fusion release causing wall surface melt and the reason is the increased in temperature. The example stated is cheese taste in the microwave popcorn due to fat encapsulation, resulting in a standardized taste distributed: when temperature rises to 57-90° C, the flavor is released.

Pressure release happens when the capsule surface is squeezed, such as removing certain tastes through chewing gum chewing (Casanova et al., 2016).

2 Types of Microencapsulation

2.1 Physicochemical Techniques

2.1.1 Coacervation and phase separation

Coacervation process is easier, economical and don’t require elevated temperatures or solvents of organic nature. Usually this technique helps to cover flavoured oils. One of the coacervation’s main drawbacks is that it exists only within small levels of pH, concentrations of colloids and/or concentrations of electrolytes (Wei et al., 1995).

Examples:
- Sweet orange oil covering with soy protein.
- Micro embedded B. L. and lactis. Acidophilus can better resist the in-process product from stomach and intestine region liquids/juices by coacervation with coating material like pectin and casein.
- Co-capsulated aspartame, enhancing protection even at 80 degree Celsius.

2.1.2 Supercritical fluids quickly expand to encapsulate polymer

...
critical carbon dioxide, alkanes (Carbon no. 2 to Carbon no. 4) and nitrous oxide are the most commonly utilized. A slight variation in temperature or stress induces a significant modification in supercritical liquid volume at the critical point. Apart from its non-toxic and non-flammable qualities, supercritical carbon dioxide is commonly used during low values of critical temperature; and it’s commonly available, with high purity and economical range (Tan et al., 2019).

The commonly employed approaches for these are:

2.1.2.1 Supercritical approach quick expansion

The fluids are of supercritical type comprising the API and coat material content is stored at elevated pressure in this process, and then discharged by a narrow nozzle at atmospheric pressure. The sudden drop in stress allows the shell content to be desolved and then dispersed on the API creating a coating material film. The downside of this method is that in supercritical fluids, both the API and the coating material content must be strongly solubilized. For addition, there are very few small stable energy density polymers (e.g. polydimethylsiloxanes (PDMS), polymethacrylates (PMA)). In that fluids including carbon dioxide are soluble. Use co-solvents can enhance the solubilization of polymer in solvent. Non-solvents have application in some cases; this helps to enhance the solubilization in fluids of supercritical nature, but at atmospheric pressure it is difficult to dissolve the material of the shell. Previously, RESS microencapsulation of TiO2 nanoparticles utilizing ethanol as a polymer shell non-solvent such as polyethylene glycol (PEG), (methyl methacrylate) were carried out (de Farias et al., 2018).

2.1.2.2 Application of gas anti-solvent (gas) process

Anti-solvent supercritical fluid (SAS) is related to this method only. In that situation, supercritical fluid is applied to a shell substance solution and the API and held at too high pressure (which is one of the requirements of method). It leading to a solvent size increase which induces super saturation and allows the solute to precipitate. The solution must therefore be solubilized in the water, but it should not be diluted in the oil and supercritical fluid combination. But, with the supercritical fluid, the liquid solution should be soluable with each other. This system is not fit for water-soluble component encapsulation since liquid has poor solubility in supercritical fluids. Particles of submicron range can be produced by using this method.

2.1.2.3 Gas-saturated solution particles (GSSP)

This method is done by combining core and shell components with high-pressure supercritical fluid. Supercritical liquid enters the shell material during this procedure, causing expanding. The polymer liquifies when the solution is warmed above the level of the glass phase. The shell content can be accumulated on the active ingredient after removing the stress. The center and shell materials in the supercritical liquid may not be soluble in this phase.

2.2 Chemical methods

2.2.1 Polymerization

2.2.1.1 Interfacial polymerization (IFP)

Multifunctional isocyanates and multifunctional acid chlorides are widely found monomers. It will be used in tandem or separately. The monomers which are multifunctional will solubilize in core material of liquid nature and then dispersed it in water phase with the agent i.e. dispersing. A multifunctional co-reactant amine is applied to the mixture. It results in accelerated surface polymerization and capsule shell production occurs. If isocyanate interacts with amine, polynylon, or polyamide shell if acid chloride reacts with amine, a polyurea shell will be formed. This creates a polyurethane layer as isocyanate reacts with monomer-containing hydroxyl. For example, using an interfacial polymerization process, encapsulated diammonium hydrogen phosphate by polyurethane urea membrane. An elevated synthesis yield (22 percent) of a microencapsule powder form production with a content filled of 62 percent of DAHP as calculated by the elementary examination. DAHP microcapsules average size is 13.35 mm. In addition, Ninety-five percent of the molecules are less than 30.1 mm in diameter (Mishra et al., 2015).
2.2.1.1 In situ polymerization

Because of polymerization activity of monomers applied to the embodiment framework, their container shell shaping happens like IFP. Receptive specialists are not applied profoundly in this framework, polymerization happens exclusively in the stage which is nonstop in framework and on these stage side of the interface made by the diffuse center and ceaseless stage in the framework.

In the beginning, a pre polymer having small molecular weight of is produced by producing a strong shell of capsule (e.g. capsulation of many lipophilic liquids, with shell material created with the chemical reaction at conditions of acidic pH of urea, with formaldehyde reagent in water means prepared with carboxy-functionalized magnetic microcontrollers) (Mishra et al., 2015).

2.2.1.2 solvent evaporation

The method of solvent evaporation microencapsulation is commonly practiced in the pharmaceutical industry for the controlled release of narcotics. The polymer microspheres obtained with inside trapped material will gradually degrade and release the encapsulated product with a specific release profile (Saffari et al., 2016).

2.3 Physical-mechanical methods

2.3.1 Spray drying

This technique includes the development of these structures like emulsion, arrangement or suspension contained center and divider substance, following later nebulized in a sight-seeing circulating chamber. Upon interaction to the warm air, the water vaporised immediately, and the substance encapsulates the heart. Atomization has some benefits over other methods: wide supply of facilities, the likelihood of using a broad range of microencapsulating agents, then potentially large-scale output, easy machinery, reasonable performance, reduced storage cost and transport and economical for manufacturing. The major drawback to atomized is the development of products that are not evenly formed. The spray drying method is one of the popular microcapsulation process have used for decade it in the microencapsule primarily flavoring agents, fats and pigmenting agents, but it’s have used in temperature sensitive items, such as microbes and essential oils, may be restricted so the necessary elevated temperature allows the material to volatilize and/or destroy.

The sumac taste was effectively microencapsulated by spray drying method in Nacl in salt taste cookies, salad and crackers microencapsulated oleoresin cardamom by spray drying method in gum arabica, malto dextrin and altered starch, resulting in increased oleoresin safety. Optimized probiotic microencapsulation of raspberry juice by 91.15 percent spray drying. The encapsulation of lipids through spray drying in potato starches, tapioca and maize has been efficient, with no conflicts between the materials encapsulated and wall.

2.3.2 Spray cooling / congealing

Spray microencapsulation is focused on cold air injection to allow particle solidification. Microparticles are formed from a solution of droplets comprising the substance of the base and surface. The atomizer nebulizes the solution and reaches a cavity in which low temperature air streams. The temperature drops results in the solidification of the product in the building, causing the substance to be encapsulated. It results in accelerated surface polymerization and capsule shell production occurs. If isocyanate interacts with amine, polynylon, or polyamide shell if acid chloride reaction takes place with amine, a polyurea shell on to the core material will be formed.

This creates a polyurethane layer as isocyanate reacts with monomer-containing hydroxyl. For example, using an interfacial polymerization process, encapsulated (DAHP) by polyurethane urea membrane. An elevated synthesis yield (22 percent) of a microcapsule powder was produced with a fill content of 62 wt percent of DAHP as calculated by elementary examination. DAHP microcapsules average size is 13.35 mm. In addition, By using lower temperatures and large scale-up capacity, spray cooling microencapsulation is considered the best encapsulation engineering. Nonetheless, microparticles can pose some drawbacks during processing, including low capacity for encapsulation and expulsion of the center. Spray cooling was used mostly to encapsulate minerals and vitamins. Spray cooling microencapsulated tocopherols with encapsulation quality levels greater than 90% in a lipid matrix. Microcapsules have been formed through spray cooling containing magnesium, iodine and retinol to stabilize by using salt of hydrogenated palm oil. Collected microcapsules are more stable and there were no sensory variations observed. It has been shown that the encapsulating agent, 01033 (2024)
2.3.3 Fluidized bed technology

The water covering is drawn over the particles and fast dissipation will in general make an external surface. The coating thickness and formulations can be collected as needed. Top spray, foundation spray and tangential spray are various types of liquid mattress coaters. The cover surface is pulled down into the liquid bed in the top spray process, so that hard or porous particles are inserted into the sheet area. Improved enclosure performance and cluster development protection are accomplished through the inconsistent streams of surface materials and particles. The covered particles are dribbled based on the covering material's arrangement. The fluid-bed coaters with a spray nozzle at top yield greater particle scores than either the lower or the tangential sprays.

2.4 Details of certain other methods of encapsulation

2.4.1 Extrusion

This is focused on a multivalent ion-related polysaccharide gel that immobilizes the center. Extrusion requires inserting the kernel into a sodium alginate solution and, through a decreased caliber pipette or syringe, a combination is forced to fall extrusion into a hardening liquid, such as calcium chloride. The relatively large particles of extrusion (usually 500 to 1,000 mm) are one of the drawbacks of this technique, which hinder use where mouth-filling is important. Therefore, for extrusion encapsulation, there is a very limited number of wall products. Microscopic. Calcium alginate gel acidophilus and extrusion-resistant starch aid in an increased rate of L survival. Upon 6 months of processing acidophilus in Iranian white savory milk. It has been shown that the β-cyclodextrin microencapsulation by extrusion gave an active oxidation remedy (Tan et al., 2019).

2.4.2 Lyophilization

Frozen compounds are dehydrated under the sublimation vacuum cycle, that is, the extraction of compound water without the application of high temperatures to test is dehydrated. This process provides good quality products, since it decreases high temperature fluctuations and is commonly used in essences or aromas. The high costs and tedious thought hinder the market applicability. In the presence of malto dextrin, carboxymethylcellulose and lyophilizing, extra virgin olive oil is microcapsulated, which indicates that the oil has been unshaked for 9-11 months, improving shelf life. Encapsulated, with lyophilization, garcinia extract in whey protein isolation and malto dextrin, which has a higher volume, finer crumb consistency, attractive color and sensory qualities in rice.

2.4.3 Emulsification

The center is first spread in an organic solvent in which the membrane is embedded through emulsification microcapsulation. Instead, the dispersion of liquid or oil with an emulsion stabilizer is emulsified. The organic solvent will be extracted through shaking evaporation to produce small polymer globules which encapsulate the center. Mainly enzymes, nutrients, vitamins, and microorganisms are encapsulated by emulsifying. Through emulsifying the encapsulated enzymes, proteolysis was improved in contrast to the free output of the enzymes. Microencapsulated probiotics showed further tolerance in artificial gastrointestinal conditions through emulsification in alginate-chitosan (Heidebach et al., 2009).

3 Effectiveness of Encapsulation Influence Factors
3.1 Polymer solubility in organic solvent

The researchers suggested that, to explain the poor encapsulation capacity of benzene, a greater volume of DMSO was used in the co-solvent method which changes the solvents proportion.

The existence of DMSO improved the solvent system's hydrophilicity and enabled the solvent to be easily dispersed into the continuous state leading to greater encapsulation and particle size output. The methylene chloride showed that, while methylene chloride was a stronger solvent for poly(lactic acid) (PLGA) microparticle formation, a stronger level of crystallinity was observed. The methylene chloride polymer had a more prominent solvency than the end capped variety. The encapsulation quality could have improved with a higher L / G ratio of PLGA polymer solution.

Second, methanol facilitated water dissemination into the dispersed state, and this dispersion of ingredients into the continuous state happened for the most part in the first stage. 

DMSO has been used to solubilize both lysozyme and PLGA and to produce emulsion falls for methylene chloride as well as to dissolve PLGA. The performance of encapsulation improved and initial explosion decreased with an improvement of DMSO volume section in the co-solvent system.

The significance of dissolvability of the natural dissolvable in water was also affirmed by the increase of methanol concentrations. The fluid is water miscible solvent. Benzene though, because only a small fraction of water will dissolve, water in the scattered state takes a lot longer to consume it. The methanol to allow polymer precipitation can be expected to be: First, in the scattered process the presence of methanol decreased polymer solubility. Second, methanol facilitated water dissemination into the dispersed state leading to greater encapsulation and particle size output.

3.2 Solubility of organic liquid solvents

While the dissolvability of water (non-solvent) was required for benzene precipitation, and that the product lost its solidification due to the rapid mass transfer between the scattered and the continuous stages, contributing to fast polymer precipitation. The methylene chloride showed that, while methylene chloride was a stronger solvent for poly(lactic acid) (PLGA) microparticle formation, a stronger level of crystallinity was observed. The methylene chloride polymer had a more prominent solvency than the end capped variety. The encapsulation quality could have improved with a higher L / G ratio of PLGA polymer solution.

Methanol decreased polymer solubility. An improvement in encapsulation capacity has also been seen in the presence of methanol as a poor solvating solvent. An improvement in encapsulation capacity has also been seen in the presence of methanol as a poor solvating solvent.

3.3 Polymer concentrations

The methylene chloride showed that, while methylene chloride was a stronger solvent for poly(lactic acid) (PLGA) microparticle formation, a stronger level of crystallinity was observed. The methylene chloride polymer had a more prominent solvency than the end capped variety. The encapsulation quality could have improved with a higher L / G ratio of PLGA polymer solution.
3.4 Dispersed-phase ratio (DP-CP ratio)

The co-polymer can be mediated by a co-restrict the release of protein from the microparticles. In some cases, the interaction between protein and hydrophobic polymers such as PLGA is due to that. On the other side, these protein cent encapsulation efficiencies for salmon calcitonin (sCTs) have been reached. The close relation of sCT with polymers. In terms of the strong solubility of sCT in the continuous process, for instance, more than 60 per the protein and the polymer, carboxylic than the end polymers.

3.5 Solvent extraction speed

Protein interacting with ionic substances and encapsulated stronger inside polymers comprising free end groups of. Solvent extraction speed undermines. The co-polymer can be mediated by a co-restrict the release of protein from the microparticles. In some cases, the interaction between protein and hydrophobic polymers such as PLGA is due to that. On the other side, these protein cent encapsulation efficiencies for salmon calcitonin (sCTs) have been reached. The close relation of sCT with polymers. In terms of the strong solubility of sCT in the continuous process, for instance, more than 60 per the protein and the polymer, carboxylic than the end polymers.

3.6 Drug polymer interaction

Protein interacting with ionic substances and encapsulated stronger inside polymers comprising free end groups of. Solvent extraction speed undermines. The co-polymer can be mediated by a co-restrict the release of protein from the microparticles. In some cases, the interaction between protein and hydrophobic polymers such as PLGA is due to that. On the other side, these protein cent encapsulation efficiencies for salmon calcitonin (sCTs) have been reached. The close relation of sCT with polymers. In terms of the strong solubility of sCT in the continuous process, for instance, more than 60 per the protein and the polymer, carboxylic than the end polymers.
Drug degradation happens during the intermediate, semi-solid stage of dispersion. When, in the continuous stage, the solubility of the drug is greater than in the dispersed process, medicine can easily spread into this continuous phase. For example, in the continuous alkaline state (pH 12, the encapsulation capacity of quinidine sulphate was 40 times more than in the neutral stage (pH 7, in which quinidine sulphate is highly soluble).

3.7 Molecular weight of polymer

The molecular weight of polymer PLGA, Microsphere Injectable for longer Alzheimer’s Disease Treatment contemplated the molecular weight effect of the polymer on exemplification productivity and built up a microsphere of o/w emulsion dissolvable evacuation process for interminable treatment. SEM has been utilized to observe the surface structure of the microspheres. A co focal laser scan microscope was used to track the delivery of the medication within microsphere. The results showed the flat, circular presence of the PLGA 15000 microsphere with a small particle size of about 50 mm. In the PLGA 15,000, 20,000, and 30,000, the encapsulation rate was 62, 75, 27, and 22% respectively. The inhomogeneous distribution of the pharmaceuticals in microspheres was explained by the initial burst of the pharmaceutical microsphere. As the polymer fixation expanded in oil and PVA focus diminished at watery level, the embodiment execution of the microspheres improved. Through increasing the polymer density, burst release could be regulated. The product release profiles had a major effect on evaporation rate. Further testing is under 30 kilometers. The efficacy of encapsulation decreased, and product release improved with the decrease in the particle size within a certain number of particle sizes.

In many industries, in particular the food- and pharmaceutical industry, microcapsulation technology is popular, as this enhances solubility, stability and controlled release properties of compounds including essential oils, antioxidants, antibiotics, and medications. Application Microencapsulation technology is commonly used in several industries. The application of microencapsulation in these industries is therefore based in this paragraph.

4 Applications of Microencapsulation

4.1 Uses in the food industry

Active additives are used in the food industry to improve the taste, color, appearance and shelf-life of items. In contrast, foods of great interest with practical health benefits, for instance antioxidants and probiotics. Most of these materials, however, have poor durability and environmental factors are readily decomposed. Therefore, it is essential to prepare bioactive high-stability compounds. One way of tackling these issues is through microencapsulation. There has been extensive research in recent years in the manufacture and applications in the food industry for high-efficiency microcapsules.

4.1.1 Beverages

The stability of anthocyanin was assessed, which was encapsulated in an isotonic soft drinking system within different carrier agents. The pigments derived from plants are water-soluble. For foods and drinks the colorants of these pigments are typically used because they have low toxicity and high-water solubility for high color strength. In addition, several studies show that antioxidants and anticarcinogenic properties of anthocyanins are significant. Nevertheless, anthocyanins form reactive pigments and can, by many influences including pH, temperature, air, oxygen and the food matrix, be decomposed into incolourable compounds. Consequently, the stability of such substances was improved using microencapsulation. The technique of spray-drying was used to encapsulate Cabernet Sauvignon anthocyanins. The microcapsules collected displayed standardized particle sizes and spherical layer. In addition, an improved defense against anthocyanin pigment was found through a mixture of Maltodextrin (MD) and Gum Arabic (GA). Prepared curcumin and catechin microcapsules using (W/O/W) emulsions. The goal of this research was to avoid both curcumin and catechin degradation in drinking systems. When used in tandem, the biological activities of curcumin and catechin improve. Such two compounds are used in the food industry as powerful bioactive compounds, which can resist multiple diseased diseases like cancer, obesity and inflammation.
manufacture of cheese, microcapsules applied to the milk permitted good flavourzymedistribution. During the increasing by the introduction of exogenous enzymes. The direct introduction of enzymes, however, leads to longer ripening. Because conventional cheese ripening takes place at a very slow rate, the maturation rate is production of the necessary color, texture, taste and aroma, low

4.1.4 can be used as an antioxidant to generate frankfurters with appropriate sensory characteristics. The functionally active antioxidant and increases consumer stability. The findings have shown that ascorbic acid was intended to encapsulate ascorbic acid in Frankfurt, as this technique facilitates the integration of a vitamin franks, ascorbic acid is often used as a replacement for sodium erythorbate. Therefore, this experiment decompose quickly. For different factors, including temperature, light, high oxygen content and high water movement, encapsulated ascorbic acid. Ascorbic acid is a healthy fruit and vegetable antioxidant. It's very unpredictable, enriched goods. The structural and sensory strength of chicken furters was assessed for the impact of the frozen meat with fish oil and to enhance oxidative shelf酸. During the processing process, the sensory value of chicken nuggets enriched with omega acids was not compromised. Omega 3 fatty acids could be microencapsulated from fish oil to enrich pre

4.1.3 Meat and poultry

4.1.2 Baked goods

4.1.4 Dairy products
The results of spray-drying microcapsulation on probiotic bacteria's stability in ice cream was analyzed. Many ice creams have been developed lately through the introduction of probiotic bacteria. The effectiveness of the probiotic bacteria is impaired however by processing and storage. Therefore, microencapsulation has been utilized to upgrade the endurance of probiotic microscopic organisms. The results showed that the encapsulated probiotic bacteria had higher survival rates compared to the non-encapsulated culture.

4.2 Application in pharmaceutical industries

The technique of microencapsulation in the pharmaceutical industry is widely used to control the release of drugs, improve stability and mask the taste. The use for the colon-specific distribution of a water solution peptide product was explored using microcapsules formulations. Peptides are typically heat-sensitive and low-permeability by polymer membranes. This research therefore aimed at maintaining the safety of heat-sensitive drugs and the optimal permeability, allowing macromolecular medicines to be postponed. The results indicate the good film formability in the 95:85:40 molar ratios of the poly(EA / MMA / HEMA) at 40 °C. The correct approach could be recommended to prepare delayed release of colon-specific microcapsules with water-solubledrugs.

Microcapsules of chitosan co-loaded for synergistic cancer therapy are developed by doxorubicin and heparin. Scientists attempted, with microencapsulation, to preserve healthy tissues, to remove adverse effects of doxorubicin (DOX) toxic chemical-therapeutic agent. In contrast, heparin (HEP) is harmful and renders cellular absorption impossible. Therefore, a HEP / CHI multilayered capsule was used for shaping chitosan (CHI), a polymer that was charged positively. CHI will defend HEP from heparanase, which makes it easier to transmit HEP intracellularly. In combination therapy the anticancer drug DOX is also encapsulated. In this analysis the investigators found that the heparanase solution was highly stable throughout microcapsules filled with DOX (HEP / CHI). Therefore, the synergistic influence on human pulmonary carcinoma (A549) cells was observed in the microcapsuls of DOX and HEP.

Detection of bitter taste masking of active ingredients prescription ingredients ibuprofen and roxithromycin, the traditional anti-inflammatory, non-steroidal, infectious drugs and popular anti-inflammatory medicines. It was observed that the chemical photos obtained by measuring pure API solutions are significantly different from those obtained by measuring APIs encapsulated with taste-masking additives. In contrast, in both APIs, the shift character received from microencapsulation was the same.

4.3 Other applications

- Export paper without carbon
- Scratching and sniffing
- Flavors and perfume of medical uses
- Microencapsulation: daily use in the encapsulation of vitamins, encapsulation of minerals (iron)
- Microencapsulation was also used to reduce potential risks involved with the treatment of hazardous or noxious materials.
- Thanks to the treatment of fumigants, herbicides, insecticides and poisons, toxicity has been reduced advantageously after microencapsulation.
- Formulation (pharmaceutical preparations for oral and injection)
- Drug flavor masking (taste tinidazole masking and microencapsulation process optimization)
- Protection
- Comfort
- Reactant exclusion
- Enhanced microcapsule surface usability
- For lower toxicity
- To reduce volatility
- Reducing uncertainty.
- Reducing flammability. Prolonged dose ways of release. It is necessary to prescribe the microencapsulated medication because microencapsulation is perhaps most effective in the preparation of pills, capsules or types of parenteral administration.
Seventeen. Separating volatile materials in order to remove incompatibilities

• Converting liquid to solid
• Providing environmental protection of atmospheric-sensitive products stabilization
• To reduce irritation of the gastric and other GI tract
• Targeting drugs
• Meat, consumer products, and cosmetics industry encapsulation
• Encapsulation systems of agricultural products
• Microencapsulation approach for the preparation of an intrauterine contraceptive system was also suggested.
• Many applications are essential to improve space capacity.
• To improve the stability of emulsions.
• To improve flowability.
• To adjust the level of chemical reactants solubilization
• Eliminate unpleasant taste or odor while taking a drug.
• To extend the impact of a drug (the capsule is not completely opened, so the contents can slowly leach out.)
• To preserve the medication from environmental degradation.

5 New Technology / Recent Developments

1. Novel process of protein microencapsulation utilizing electrostatic field with high voltage.
2. Aminoglycosides encapsulated by liposome
3. In vitro (a) Hydrophilic core material like (i) Doxorubicin (ii) Cisplatin (iii) 5-Fluorouracil (b) Hydrophobic core material (i) Taxol (ii) Comptothecin (CPT)
4. In vivo release
5. Dispersal Technology
6. Solution Gel Microparticulate Development New Methods
7. Biodegradable Microcapsules Formulation (i) Calcium Alginate Microencapsules (ii) Chitosan microencapsules (iii) Albumin microencapsules
8. Technique for evaporation of solvent emulsion utilizing surface reaction study

6 Future Trends

6.1 Food industries

<table>
<thead>
<tr>
<th>Food Industry</th>
<th>Pharmaceutical Industry</th>
<th>Other Industries</th>
</tr>
</thead>
</table>

Table.1
6.2 Pharmaceutical industries

Microencapsulation of medicines has potential for applying in the pharmaceutical industries as it helps for the consistent and regulated delivery of medications in various medical conditions. However, for organ-specific drug distribution, microencapsulated medicines still have drawbacks. It remains a problem to achieve high reproducibility for microencapsulated medicines. For contrast, in other sectors, including the apparel and pharmaceutical industry, microencapsulation is used.

7 Conclusion

Microencapsulation technique helps in overcoming the causes which are caused by conventional dosage form such as poor bioavailability, low solubility, poor flow property, uncontrolled release of drug. Yes, it is true that all drugs cannot be encapsulated in microcapsule but the drugs which are prepared by this technique proves to be good in terms of their properties as compared to conventional dosage form. For example, Isosorbide dinitrate microencapsule has sustained release action.
8 References


International magnetic and dielectric properties of (BaFe11.9Al0.1O19).


Pharmacological and food applications of Syzygium cumini.

Heidebach, T., Foerst, P., and protein isolates matrices for controlled release.


