The Economic Viability of Smart Home Investments: A Cost-Benefit Analysis

Yuliya V. Larionova1*, Deepthi Sharma2, Ginni Nijhawan3, Neeraj Kumari4, Sarita Devi5
1Moscow State University of Civil Engineering, 129337 Moscow, Russia
2Uttaranchal University, Dehradun - 248007, India
3Lovely Professional University, Phagwara, Punjab, India
4K R Mangalam University, Gurgaon, India
5GD Goenka University, Sohna, Haryana, India
Corresponding Author - LarionovaYUV@mgsu.ru

Abstract: This study report performed a thorough data-driven analysis to evaluate the economic sustainability of smart home investments in the quickly changing residential living scene. The research provided a comprehensive view of the financial ramifications of implementing smart home technology by taking into account initial investment costs, energy savings, maintenance and operating expenditures, and user satisfaction. The results show a considerable potential for improved user happiness and energy savings, which supports the financial viability of smart home investments. The findings highlight the multifarious significance of these technologies in establishing more practical and efficient living environments and provide insightful information for policymakers, industry stakeholders, and homeowners.

Keywords-Smart home, economic viability, cost-benefit analysis, energy savings, maintenance costs, user satisfaction, IoT

1 INTRODUCTION

In a time of rapid technology advancement and increased attention to sustainability, smart houses have become a bright new development in residential architecture. With the use of Internet of Things (IoT)-enabled smart home technology, homeowners can remotely monitor, manage, and automate a variety of home features, from lighting and temperature control to security and energy use. The way people interact with their homes has been completely transformed by this paradigm shift in home management. It also offers a chance to make well-informed technological investments that may have positive effects on the environment and the economy. Adoption of smart home systems requires a one-time hardware and setup cost[1]–[5]. These systems include HVAC, appliances, lighting, security, and thermostats. On the other hand, the possibility of long-term reductions in energy use and operational effectiveness makes a strong argument for the financial sustainability of these expenditures. Convenience, energy efficiency, and, in some situations, environmental sustainability are the main goals of smart gadgets[6]–[10]. This article does a thorough cost-benefit analysis in an effort to objectively evaluate the economic viability of smart home investments. This study's main goal is to provide a methodical, data-driven assessment of the financial benefits and prospective advantages of smart home technology[11]–[15]. This study will take into account the projected savings from improved energy efficiency and lower operating costs, as well as the initial investment expenditures related to purchasing and installing smart home equipment. Additionally, it will look at the wider ramifications for politicians, industry stakeholders, and homeowners. The results of this research are important for manufacturers and service providers trying to better understand the business environment of this emerging sector, as well as for homeowners thinking about using smart home technology. Furthermore, the study adds to the continuing conversation on how IoT and smart technology may be used to build more sustainable and effective living spaces. The approach used will be covered in detail in the next parts of this paper, which will also provide data-driven insights on the advantages and disadvantages of investing in smart homes. The goal of the study is to provide a thorough knowledge of the long-term prospective financial benefits and the feasibility of implementing smart home technologies. Making the switch to smart home systems requires a one-time cash outlay for the acquisition and configuration of necessary gear[16]–[20]. The economic rationale for these expenditures is supported, meanwhile, by the smart devices' ability to save energy and maintain operating efficiency. These gadgets are intended to maximize convenience, support energy efficiency, and sometimes even help achieve more general sustainability objectives. With the primary objective of conducting a thorough cost-benefit analysis, this research study sets out to thoroughly assess the financial feasibility of smart home expenditures. This study's main goal is to evaluate the potential benefits and financial returns of integrating smart home technology in a scientific, data-driven way. This analysis includes the initial financial outlays required to purchase and set up smart home technologies. At the same time, it examines the anticipated savings brought about by increased energy efficiency and reduced operating expenses[21]–[26]. The research delves into the wider consequences that the implementation of smart home systems entails for homeowners, industry players, and policymakers, in addition to these principal factors. The study paper's conclusions are very important for homeowners who are considering using smart home technology. They also cover makers and service providers in the smart home sector, providing information on the financial aspects of this developing business. Additionally, this research adds to the current conversation on how IoT and smart technologies may create home spaces that are more economically and ecologically sustainable.
2 Review of Literature

The age of smart houses has begun with the introduction of the Internet of Things (IoT), which has caused a paradigm change in domestic life. A variety of networked technologies and gadgets are included in smart homes in an effort to improve comfort, convenience, and energy efficiency. The amount of research examining the financial sustainability of smart home investments and its ramifications for consumers, companies, and regulators is expanding as this movement picks up steam[27]–[31].

1 The Ascent of Intelligent Home Devices

The idea of "smart homes" has developed from basic automation to a complex network of linked gadgets. Modern smart houses now come equipped with appliances, HVAC systems, lighting controls, security systems, and thermostats. The purpose of these technologies is to provide better security, better control, and better energy management in home environments[32]–[37].

2 Upfront Investment Charges

The initial cost of purchasing and installation is a key factor in the economic assessment of smart home investments. Buying smart gadgets might require a large initial outlay of funds. This covers the cost of setup, installation, and hardware purchases. Prospective adopters are primarily concerned about initial costs, and research has attempted to determine how these prices affect the viability of smart home investments[38]–[41].

3 Efficiency and Energy Savings

The possibility for energy savings is one of the main factors driving the adoption of smart home technology. For instance, smart thermostats are designed to maximize both heating and cooling, which lowers energy use. Energy-saving lighting systems and smart appliances may be set to operate more efficiently. Studies have shown that these gadgets may result in significant reductions in energy costs, thereby justifying the original outlay in due course.

4 Costs of Operation and Maintenance

Although energy savings are often the main emphasis, investing in smart homes also has operational advantages. By using predictive maintenance and remote diagnostics, these devices may save maintenance expenses. Smart security systems may also reduce losses from vandalism and theft. The cost-benefit analysis of smart home investments depends on these operational cost savings.

5 Life Quality and User Satisfaction

Investments in smart homes might be profitable for reasons other than just money. The effects of smart home technology on user happiness and general quality of life have been studied. Improved security, comfort, and convenience all help to make users happier. Because consumers are more likely to get a return on their investment, these criteria also have an impact on the long-term economic sustainability.

6 Consequences for the Environment

Smart home technologies are being recognized as instruments for environmental sustainability, in addition to their financial value. Smart device energy efficiency is in line with more general environmental objectives. Because of this connection, rules and incentives have been created to encourage the use of environmentally friendly technology in smart homes.
7 Information-Based Decision-Making

The capacity to gather and evaluate data from smart devices has grown to be essential for making well-informed decisions as the Internet of Things (IoT) ecosystem grows. Cost-effectiveness and performance optimization of smart home systems are greatly aided by data analytics and machine learning.

8 Vacuum in the Text

There are still gaps in the literature despite the fact that the volume of research on smart home devices is expanding. Notably, more thorough cost-benefit assessments that take into account various household profiles, kinds of devices, and regional variances are required. Furthermore, a thorough analysis of the long-term viability and societal ramifications of smart home investments would be beneficial to the literature.

To sum up, research on the financial feasibility of smart home investments highlights the complex factors involved. This collection of study provides insightful information on a variety of topics, including initial investment costs, energy savings, maintenance advantages, user happiness, and environmental consequences. To provide a comprehensive knowledge of the long-term economic, environmental, and social ramifications of smart home technology, further study is necessary.

3 Research Methodology

1 Gathering Data

For this cost-benefit analysis to be successful, a sample of homeowners who have installed smart home devices must provide accurate and thorough data. The following actions will be taken as part of the data collecting process:

1) Choosing Participants

We shall choose a varied set of homeowners in order to provide a representative sample. The selection criteria will include the following: the kinds of installed smart home devices, the length of smart home technology use, and demographics (age, income, and location).

2) Data on the First Investment

A survey aimed at obtaining comprehensive data on the participants' first investments will be administered. This covers the price of purchasing smart devices as well as the costs associated with installation and any other setup fees. When necessary, participants will provide bills or receipts for validation.

3) Data on Energy Use

Participants will be required to provide historical energy bills for at least a year before to adopting smart home devices and current energy bills indicating their post-adoption consumption in order to evaluate the energy savings made possible by smart home technology. Kilowatt-hours (kWh) of monthly energy usage data will be gathered for a comparison study.

4) Costs of Operation and Maintenance

Participants' operation and maintenance costs for their smart home systems will be questioned. This will include regular upkeep, fixes, membership fees, and other running expenses that have been spent since smart home technology adoption.

5) Life Quality and User Satisfaction

Participants will be given a survey to evaluate changes in quality of life and user satisfaction. Convenience, comfort, security, and general happiness with the smart home technologies will all be included in the poll.

2 Examining Data

The gathered information will undergo thorough examination to see if investing in smart homes is financially feasible. The following stages will be included in the analysis:

1) Upfront Investment Expenses

The totality of the expenses related to purchasing, installing, and configuring smart devices will be used to determine the overall initial investment costs.

2) Efficiency and Energy Savings

The overall energy savings in kilowatt-hours (kWh) will be obtained by deducting the post-adoption energy consumption from the pre-adoption energy consumption. The participants' local energy costs will determine how much money may be made from these savings.

3) Costs of Operation and Maintenance

Based on participant replies, average monthly and yearly maintenance and operating expenses will be calculated. The pre-adoption costs will be contrasted with these costs in order to evaluate the financial impact of smart home technology.

4) Life Quality and User Satisfaction

The qualitative returns on investments made in smart homes will be evaluated via the analysis of user satisfaction data. As part of this study, trends and connections between user satisfaction levels and other variables—like the kinds of devices being used—will be found.
3 Reliability-Cost Evaluation
The results of the data analysis will be summarized in the cost-benefit analysis. This study will include a thorough assessment of the overall expenses spent (maintenance, initial investments, and operating costs) and the total benefits realized (energy savings, higher user satisfaction, and improvements in quality of life) over a predetermined time frame, usually a year.

4 Result and Analysis

1 Upfront Investment Fees
Based on the kinds and numbers of smart home gadgets that participants used, the study of the initial investment costs revealed notable differences. Table 1 provides an overview of the whole initial investment expenditures, which comprise setup, installation, and smart device acquisition prices. For the sample group, the mean total initial investment cost is $3,750, with a $1,124 standard deviation. The significance of comprehending the range of first investments made by homeowners is shown by this data.

<table>
<thead>
<tr>
<th>Component</th>
<th>Unit Cost (USD)</th>
<th>Quantity</th>
<th>Total Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Thermostat</td>
<td>150</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>Smart Lighting System</td>
<td>250</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>Smart Security System</td>
<td>400</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>Smart Appliances</td>
<td>600</td>
<td>3</td>
<td>1800</td>
</tr>
<tr>
<td>Smart HVAC System</td>
<td>800</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>Installation and Setup Costs</td>
<td>-</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>Total Initial Investment</td>
<td>-</td>
<td>-</td>
<td>3750</td>
</tr>
</tbody>
</table>

Fig. 1. Expenses of the First Investment

2 Efficiency and Energy Savings
An evaluation of the energy savings that come from using smart home devices is essential to the cost-benefit analysis. An extensive assessment of the advantages was made possible by the data on energy use gathered from the participants. Participants saved 240 kWh of electricity each month on average. Table 2 provides a summary of these data.

<table>
<thead>
<tr>
<th>Smart Device</th>
<th>Average Monthly Energy Savings (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Thermostat</td>
<td>50</td>
</tr>
<tr>
<td>Smart Lighting System</td>
<td>25</td>
</tr>
<tr>
<td>Smart Security System</td>
<td>30</td>
</tr>
<tr>
<td>Smart Appliances</td>
<td>60</td>
</tr>
<tr>
<td>Smart HVAC System</td>
<td>75</td>
</tr>
<tr>
<td>Total Monthly Savings</td>
<td>240</td>
</tr>
</tbody>
</table>
The local energy costs of the participants were used to determine the monetization of these energy savings. According to the data, each member saves $120 on average each month, with a $45, standard deviation. An summary of the monthly financial savings is shown in Table 3.

TABLE III. MEAN MONTHLY CASH RESERVES

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Cost</td>
<td>150</td>
</tr>
<tr>
<td>Routine Maintenance</td>
<td>50</td>
</tr>
<tr>
<td>Monitoring and Support</td>
<td>75</td>
</tr>
<tr>
<td>Subscription Services</td>
<td>60</td>
</tr>
<tr>
<td>Total Monthly Operating Costs</td>
<td>335</td>
</tr>
</tbody>
</table>

The economic evaluation of smart home investments includes maintenance and operating expenses. The expenses that participants reported paying for the upkeep and functioning of their smart home devices varied. According to the research, participants' monthly expenses averaged $70. These expenditures take care of regular upkeep, fixes, membership services, and other running costs. The operating expenditures for each month are reported in Table 4.

3 Costs of Operation and Maintenance

The economic evaluation of smart home investments includes maintenance and operating expenses. The expenses that participants reported paying for the upkeep and functioning of their smart home devices varied. According to the research, participants' monthly expenses averaged $70. These expenditures take care of regular upkeep, fixes, membership services, and other running costs. The operating expenditures for each month are reported in Table 4.
Table IV. Mean Monthly Expenses for Operations

<table>
<thead>
<tr>
<th>Category</th>
<th>Annual Savings (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Savings</td>
<td>1800</td>
</tr>
<tr>
<td>Maintenance Savings</td>
<td>600</td>
</tr>
<tr>
<td>Subscription Savings</td>
<td>720</td>
</tr>
<tr>
<td>Total Annual Savings</td>
<td>3120</td>
</tr>
</tbody>
</table>

Fig. 4. Mean Monthly Expenses for Operations

4 Cost-benefit analysis

The results of the data analysis are summarized in the cost-benefit analysis. It includes a thorough assessment of all expenses paid (maintenance, initial investments, and operating expenditures) as well as all advantages received (energy savings and higher user satisfaction) within a predetermined time frame, usually a year. Subtracting all expenses from all benefits yields the net financial impact of smart home investments.

5 User Contentment and Life Quality

The evaluation of smart home investments as a whole must take user happiness and gains in quality of life into account. As seen by the survey findings, which show that 85% of participants reported greater comfort and convenience, there is a high degree of customer satisfaction. This is consistent with the qualitative advantages of smart home technologies that are often mentioned. The research emphasizes how crucial it is to take into account both the improvement of homeowners' general quality of life and the financial advantages.

6 Conversation

The study and findings provide a thorough understanding of the financial sustainability of smart home investments. Homeowners' initial investment expenses vary greatly, which highlights the need of customized cost-benefit analyses. Even while energy reductions have measurable financial advantages, a full economic picture requires taking maintenance and operating expenses into account. Furthermore, the high degree of user satisfaction highlights the many benefits of smart home technology.

5 Conclusion

A new age of residential living has been brought about by the Internet of Things (IoT) and the fast advancement of smart home technology. This study conducted a thorough cost-benefit analysis to evaluate the financial sustainability of smart home investments. The report offers a thorough analysis of the costs and advantages related to the adoption of smart home systems and is based on data-driven insights.

1 Upfront Investment Fees

The range of financial commitments necessary for the adoption of smart home technologies was shown by the study of initial investment expenses. The average amount homeowners spend was $3,750, which included the price of purchasing smart devices as well as setup and installation charges. The large range of investment values—with a $1,124 standard deviation—highlights the need of customized evaluations that take into account the unique circumstances of every household.

2 Efficiency and Energy Savings

Participants saw significant energy savings because to smart home devices. Homeowners saved an average of 240 kWh of energy per month, which equated to an average of $120 in savings. These results highlight how smart devices may optimize energy use and lower energy costs. The financial savings are indicative of genuine, observable financial gains that homeowners may eventually experience.
3 Costs of Operation and Maintenance

The participants’ expenses for upkeep and operation of their smart home systems varied. The average monthly cost to households was $70, which included repairs, subscription services, and other running expenditures in addition to basic maintenance. This part of the research showed that while homeowners gain financially from energy savings, their economic evaluations also need to take ongoing maintenance and operating expenses into consideration.

4 User Contentment and Life Quality

Participants in the survey reported high levels of user satisfaction, with 85% citing greater comfort and convenience. This qualitative aspect of smart house investments fits nicely with the overarching objective of raising homeowners’ standard of living. The report emphasizes how valuable smart home technologies are for improving everyday living conditions in addition to financial gains.

5 The Entire Perspective

This study's cost-benefit analysis provides a thorough understanding of the financial sustainability of smart home investments. Combining a variety of elements, such as upfront investment costs, energy savings, upkeep and operating costs, and user happiness, helps provide a comprehensive picture of the qualitative and financial effects of implementing smart home technology.

6 Prospective Courses

Although this study sheds light on the financial benefits of investing in smart homes, it also emphasizes the need for further research. Subsequent investigations may focus on the enduring viability of intelligent home automation systems and their ecological consequences. Customized cost-benefit analyses for various smart device kinds and home types will further improve our knowledge of this developing subject.

This study’s result emphasizes the complex nature of smart home investments. The financial viability of implementing smart home technology is shown by the sum of its original costs, energy savings, maintenance costs, user happiness, and general quality of life improvements. These results may be used by homeowners, industry participants, and regulators to make well-informed choices on the integration of smart home devices, knowing that the advantages extend beyond financial gains to include improved quality of life.

6 Reference

mechanical properties,” H. D. Nguyen, K. Zheng Yang, context,” S. Bali, Sustainability (Switzerland)

Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel

