IoT-Enabled Indoor Navigation: Data-Driven Insights for Seamless User Experience from the Indoor Navigation Test

Glazkova Sudhir Pranav Shweta Sunny
1Department of Management and Innovation, National Research Moscow State University of Civil Engineering (NRU MGSU), 26 Yaroslavskoye Highway, Moscow, Russia
2Uttaranchal University, Dehradun - 248007, India
3Lovely Professional University, Phagwara, Punjab, India
4K R Mangalam University, Gurgaon, India
5GD Goenka University, Sohna, Haryana, India
Corresponding Email: leram86@mail.ru

Abstract: In order to improve the user experience in intricate interior settings, this research uses data enabled indoor navigation is presented in this article, driven insights, indoor navigation systems. A link

1 INTRODUCTION

• The improvement of interior navigation is a critical issue as these expectations are spread throughout

2 Importance

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
2 REVIEW OF LITERATURE

1 Indoor Navigation Systems Powered by IoT

Indoor navigation systems that are enabled by the Internet of Things (IoT) improve navigation by using a network of sensors, mobile devices, and data analytics. These systems have been used in a number of settings, including airports, museums, retail stores, and healthcare facilities. Indoor navigation systems powered by the Internet of Things (IoT) provide users with a dynamic and all-encompassing navigation experience by supplying real-time data, including places of interest and user position.

2 Sensors and Information Gathering

The placement of sensors within interior spaces is the basis of Internet of Things-enabled indoor navigation systems. These sensors gather information on user location, temperature, humidity, and noise levels. Examples of these sensors include ambient sensors, Bluetooth beacons, and Wi-Fi access points. Sensor data is essential for understanding the surroundings and context, which enhances navigation accuracy.

3 User Characteristics and Customization

Studies have shown that user profiles—which include demographic data and previous navigation experience—are essential for customizing navigational experiences. Systems may optimize the user experience by offering personalized routes and location-based services depending on user choices.

4 Obstacles in Interior Navigation

The complexity and dynamic nature of interior settings are the main causes of challenges in indoor navigation. System accuracy is hampered by elements including signal interference, multi-floor buildings, and different user needs. Research has concentrated on using machine learning algorithms and sophisticated sensor fusion approaches to overcome these issues.

5 User Opinions and Contentment

An important source of data for assessing the performance of indoor navigation systems is user feedback. Research has shown that in order to pinpoint areas that need development, it is critical to collect customer satisfaction ratings and comments. Feedback data helps direct system improvements and improves the overall user experience.

6 Combining virtual reality (VR) with augmented reality (AR)

The mixing of AR and VR technology is a new trend in indoor navigation research. These technologies superimpose digital data on the real world to provide consumers with a more engaging and dynamic navigating experience. This field of study investigates how AR and VR might improve navigation accuracy and user engagement. The assessment of the literature emphasizes the noteworthy advancements in IoT-enabled indoor navigation systems. Studies have shown that these systems, which provide individualized, real-time guidance, have the potential to revolutionize indoor navigation.

Creating more efficient and user-focused indoor navigation systems starts with the integration of sensors, user profiles, and feedback mechanisms. In order to further enhance the interior navigation user experience, future research in this area should continue to address the difficulties related to indoor navigation, take into account newly developing technologies like AR and VR, and investigate creative solutions.

3 RESEARCH METHODOLOGY

1 Data Gathering

Sensor Deployment: An Internet of Things (IoT) sensor network was systematically set up in the interior research setting. These sensors comprised humidity, temperature, noise level, Bluetooth beacons, and Wi-Fi access points. Every sensor gathered data in real time and sent it to a central data storage location.

1108 (2024)
User Profiling: Prior to the navigation test, a user survey was used to gather user profiles. The questionnaire asked about prior experience with indoor navigation as well as age and gender. Based on their profiles, users were categorized and divided using this data.

Navigation Data: Throughout the indoor navigation test, user navigation data was captured. User ID, timestamp, beginning and finishing locations, and the user’s path were all included in this data. Using mobile devices with the navigation app loaded, real-time navigation data was gathered.

User Input: Following the completion of the interior navigation test, participants were requested to provide comments and satisfaction scores. A 5-point satisfaction rating and open-ended questions were incorporated in a feedback form. The purpose of gathering this feedback was to assess user happiness and get qualitative data.

Analyzing Data

Sensor Data Analysis: To comprehend environmental conditions and their possible influence on the user experience, sensor data, including temperature, humidity, and noise levels, was evaluated. Patterns and relationships were found using statistical approaches.

Analysis of User Profiles: To ascertain if age, gender, or prior navigation expertise had any appreciable impact on the navigation results, user profiles were examined. Regression and comparative studies were performed to evaluate these associations.

Analysis of Navigation Data: To get knowledge regarding routes traveled, travel times, and possible detours from the best routes, navigation data from users was examined. This study assisted in identifying preferences and navigational obstacles.

User Feedback Analysis: To better understand users’ experiences and identify particular areas of praise or concern, a thorough analysis of users’ qualitative feedback and satisfaction ratings was conducted.

Combining Data Insights
A comprehensive understanding of the interior navigation experience was produced by integrating the insights gleaned from sensor data, user profiles, navigation data, and user comments. Personalized suggestions based on user profiles and connections between sensor data and navigation results were made easier by this integration. The research respected participants’ privacy and gave their permission in accordance with ethical standards. Every piece of information was anonymised and treated with discretion. Prior to data collection, participants gave their informed permission. It is important to recognize certain constraints associated with this practice. These include the possibility of biases in user input, the impact of variables not taken into consideration during the research, and the controlled indoor setting, which may not accurately reflect real-world situations. This section’s methodology offers an organized technique for gathering and analyzing data for the IoT-enabled indoor navigation research. The project intends to provide thorough insights into the aspects impacting the interior navigation experience and to permit suggestions for system enhancement by merging sensor data, user profiles, navigation data, and user feedback.

4 Result and Analysis

<table>
<thead>
<tr>
<th>User ID</th>
<th>Age</th>
<th>Gender</th>
<th>Previous Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>Male</td>
<td>Moderate</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>Female</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>Male</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>Female</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User ID</th>
<th>Age</th>
<th>Gender</th>
<th>Previous Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We displayed user profile information, such as age, gender, and prior indoor navigation experience, in Table 1. The bulk of the study’s participants, with an average age of 29, were between the ages of 25 and 34, according to a review of user profiles. There was a significant association found between user happiness and familiarity with interior navigation systems: users with strong prior experience with indoor navigation reported greater satisfaction levels (85%) compared to users with minimal prior experience (60%).

<table>
<thead>
<tr>
<th>Sensor ID</th>
<th>Location ID</th>
<th>Timestamp</th>
<th>Temperature (°C)</th>
<th>Humidity (%)</th>
<th>Noise Level (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>201</td>
<td>15-01-2023 10:00</td>
<td>22.5</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>102</td>
<td>202</td>
<td>15-01-2023 10:05</td>
<td>21.8</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>103</td>
<td>203</td>
<td>15-01-2023 10:10</td>
<td>24</td>
<td>40</td>
<td>62</td>
</tr>
<tr>
<td>104</td>
<td>204</td>
<td>15-01-2023 10:15</td>
<td>23.2</td>
<td>55</td>
<td>68</td>
</tr>
</tbody>
</table>

Temperature levels varied from 21.8°C to 24.0°C, with an average of 22.9°C, according to the analysis of sensor data. There was a range of 40% to 55% humidity, with an average of 47.5%. The results indicate that there is a positive link between temperature and user satisfaction. Specifically, users who reported greater levels of happiness (78%) in warmer locations (24.0°C) were less satisfied (68%), compared to users in colder situations (21.8°C). This suggested that a major factor influencing customer pleasure was comfort, which was impacted by temperature.
User ID	Timestamp	Start Location	End Location	Route Taken
1 | 15-01-2023 10:20 | Lobby | Lobby | Lobby to Conference Room
2 | 15-01-2023 10:25 | Lobby | Cafeteria | Lobby to Cafeteria
3 | 15-01-2023 10:30 | Hallway | Office 1 | Hallway to Office 1
4 | 15-01-2023 10:35 | Cafeteria | Lobby | Cafeteria to Lobby

![Fig. 3. Data on User Navigation](image)

User navigation data, including routes traveled, was shown in Table 3. 75% of users, according to an analysis of navigation data, took the suggested routes. But 25% of customers strayed from the recommended routes, which resulted in somewhat higher journey times. Combining navigation data with user input analysis revealed that some users chose different paths, maybe because they were used to the interior environment or had certain preferences.

TABLE IV. Data on User Input

<table>
<thead>
<tr>
<th>User ID</th>
<th>Feedback Timestamp</th>
<th>Satisfaction Rating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11:00</td>
<td>4</td>
<td>“Overall good experience, but signage could be better.”</td>
</tr>
<tr>
<td>2</td>
<td>11:30</td>
<td>5</td>
<td>“Extremely satisfied with the navigation system.”</td>
</tr>
<tr>
<td>3</td>
<td>12:00</td>
<td>3</td>
<td>“Found it challenging to locate the restrooms.”</td>
</tr>
<tr>
<td>4</td>
<td>12:30</td>
<td>4</td>
<td>“Decent experience, but some areas were noisy.”</td>
</tr>
</tbody>
</table>

![Fig. 4. Data on User Input](image)
5 Conclusion

The findings and examination shown in these tables show how IoT enabled indoor navigation, emphasizing data-driven insights. Furthermore, as indoor navigation becomes more dynamic, both users and businesses can benefit from more efficient and enjoyable navigation experiences.

User Profiles Are Important: User happiness is greatly impacted by user profiles, which include age, gender, and previous indoor navigation experience. Higher satisfaction levels were shown by users with more prior experience, underscoring the value of customizability.

• Route Personalization: According to navigation data, certain users favored different routes. This suggests that offering customers flexibility and customized route alternatives is crucial. User preferences and feedback can help in improving navigation systems.

• User Profiles, Environmental Circumstances, and Routefinding: The importance of ambient factors in the indoor navigation experience was highlighted by the increased satisfaction levels indicated by users in regions with more pleasant temperature settings.

• User Feedback as a Driver for Improvement: Information gathered from users was a vital part in evaluating the overall user experience. In order to provide a more readable and enjoyable navigation experience, the data analysis may suggest improvements on areas of potential work, such as noise control and design.

6 References

