Opportunities for Utilizing Vortex Generators on Vertical Axis Ocean Current Turbines: A Review

Abstract.

1 Introduction
Several VG designs, derived from wind turbines VAWTs, horizontal axis ocean current turbines (HAOTs) and VAOTs. VG is a component in the shape of a tiny fin that is applied to the surface of an object or foil. Adding VG was first used on military aircraft wings in the early 1940s to maximize airflow, boost lift force, and enhance aerodynamic performance while the aircraft was in flight. Compared to aircraft without VG, it flies at higher speeds and enhances landing and takeoff performance.

However, the findings of these studies cannot be generalized. The effect of VG depends on the reactivity of the fluid, the roughness, and the surrounding flow conditions, as well as the design and implementation of VG. Figure 1 shows a comparison between a blade with and without VG, illustrating the upwash and downwash vortices generated by the VG.

In addition to the many benefits VAOTs offer, there are a number of drawbacks that VG must address. This is particularly true when VG is used to the NACA 0021 airfoil on the VAOTs. This would allow for enhanced aerodynamics, delaying the separation of the flow and reducing stall. Since passive VG does not activate the VG in the absence of flow, it needs to be called into action and must be replace the VAWT system. This would allow for larger amounts of energy to be harnessed from the water, while there was still a shortage of studies on horizontal axis wind turbines (HAWTs), but vertical axis turbines (VAT) have been shown to be very good.

The principle of vertical axis turbine (VAT) is quite simple. VATs have the blades rotate around a vertical axis, allowing them to capture wind from any direction. This makes them ideal for use in areas with unpredictable wind patterns. VATs also have the advantage of being able to be installed on the seabed, variable pitch or fixed pitch. This turbine can be combined with a floating system, a system submerged on the sea floor. However, the findings of these studies cannot be generalized. The effect of VG depends on the reactivity of the fluid, the roughness, and the surrounding flow conditions, as well as the design and implementation of VG. Figure 1 shows a comparison between a blade with and without VG, illustrating the upwash and downwash vortices generated by the VG.

2 Vertical axis turbine principles

Vertical axis turbines (VAT) are a type of turbine that rotates around a vertical axis. This allows them to capture wind from any direction, making them ideal for use in areas with unpredictable wind patterns. VATs also have the advantage of being able to be installed on the seabed, variable pitch or fixed pitch. This turbine can be combined with a floating system, a system submerged on the sea floor. However, the findings of these studies cannot be generalized. The effect of VG depends on the reactivity of the fluid, the roughness, and the surrounding flow conditions, as well as the design and implementation of VG. Figure 1 shows a comparison between a blade with and without VG, illustrating the upwash and downwash vortices generated by the VG.
A first-generation ocean current electricity generation system which has the advantage of being installed in relatively shallow waters (around 20 to 40 meters deep). Fig. 2. the comparison between (a) horizontal axis ocean current turbines (HAOT), (b) vertical axis ocean current turbines (VAOT) [19].

HAOT and VAOT use the kinetic energy of ocean currents to drive an electric generator but have several differences. The main difference between HAOT and VAOT lies in when the turbine receives flow, where in HAOT the flow direction is parallel to the turbine shaft axis (Fig. 2. (a)) and in VAOT the flow direction is perpendicular to the turbine shaft axis (Fig. 2. (b)). In the introduction, it was explained that VAOT has very basic weaknesses compared to HAOT, although it also has several advantages. Some disadvantages of VAOT include low performance efficiency, poor self-starting, low tip speed ratio (TSR), vibration and cavitation, but also VAOT has advantages including, being able to accept flow from all directions, easy maintenance, low cost and simple construction.

There are fundamental physical principles that all VATs share, as seen in Figure 3., the force and velocity vectors of the VAT blade are visible. The tangential velocity U and the inlet velocity V_∞ combine to give the resultant velocity W when the blade rotates counterclockwise. The resulting speed, as shown in Figure 2, lift and drag forces, as well as normal and tangential forces, are components of the resultant speed and AoA, so that is what determines the force acting on the angle blade angle. Can be written as:

$$
W = U + V_\infty
$$

Fig. 3. Force and velocity vectors of a VAT [20].

Figure 4. shows the change in a single blade’s speed vector over a single rotation. Even with constant rotating speed and wind speed, the resultant velocity and AoA vary in both direction and amplitude with azimuth angle. The upstream half-cycle ($0^\circ < \theta < 180^\circ$) of the bar is positive, whereas the downstream half-cycle ($180^\circ < \theta < 360^\circ$) is negative. Cross-flow devices, or VAWTs, have aerodynamics that are more complicated than axial-flow HAWTs in the following ways.
The double-multiple stream-tube (DMST) model is based on the MS (multi-stream) concept, which divides the actuator disk into two pieces, upstream and downstream. Figure 5 depicts the DMST model diagram. This model assumes a constant speed at the actuator disk and a central pressure equal to the asymptotic pressure. The upstream disk is governed by Bernoulli's equation. This model has various drawbacks, including assuming constant flow and failing to characterize flow behavior throughout the full region. However, the advantages of this model for evaluating the performance of vertical-axis wind turbines include its simplicity and short computation time.

According to Figure 5, the fluid flow velocity is not disturbed by V_∞, which decreases in the axial direction. Additionally, V_{au} reduces upstream speed. When the flow reaches the center of the disk, it has the equilibrium velocity V_e and downstream becomes V_{adi}.

The mentioned speed equations are shown below.

\begin{align*}
V_{\text{au}} &= auV_\infty \\
V_e &= (au - 1)V_\infty \\
V_{\text{adi}} &= (2au - 1)V_\infty
\end{align*}
The Tip Speed Ratio (TSR) is an incredibly significant aspect of turbine design. TSR refers to the ratio of wind speed to the speed of the turbine blade tips. The blade tip speed could be computed as $\omega \times R$, where ω is the rotor's rotational speed in radians/second and R is the rotor radius in meters.

Therefore, we can also write,

$$TSR = \frac{R \omega}{V_{in}}$$

Power coefficient (C_p), a dimensionless parameter, is defined as the ratio between the maximum output power and the kinetic energy flux passing through the front of the turbine, where ρ (kg/m3) is the air density, V_{∞} (m/s) is the wind speed, and A (m2) represents the swept area.

$$C_p = \frac{1}{2} \frac{P}{\rho A V_{\infty}^3}$$

Power (P) is calculated by multiplying the turbine's torque by the angular speed. The following equations are used to compute solidity, which is a significant aspect in rotor design and analyzing turbine efficiency:

$$P = \tau \omega$$

$$\sigma = \frac{nc}{R}$$

3 Vortex generator working principle

Fig. 6. Flow separation behind the vortex generator [24].
VGs are positioned on a longitudinal line between two and fifteen percent of the chord length. VG controls fluid flow over the upper surface of the airfoil surface by generating vortices that energize the boundary layer. This results in improved performance and control at low fluid speeds up to critical angles of attack. VG creates small vortices in the fluid flow above the airfoil. These vortices provide energy to the boundary layer which usually pools on the surface of the airfoil, so that the energy of the boundary layer is able to withstand flow separation compared to the stagnant boundary layer. The airflow attached to the airfoil surface provides better surface control and increases lift at lower speeds. These factors influence airfoil performance and can help reduce drag loss while maximizing overall lift to drag (L/D) improvement. Geometric VG variables include height, shape, orientation, one or two-line layout, etc.

3.1 Vortex generators profile

VGs can be manufactured in a variety of forms, including rectangular, triangular, round, airfoil, and trapezoidal, as seen in Figure 7. Because of the various longitudinal vortex strengths, different shapes create variable separation suppression effects. Prior research has mostly concentrated on rectangular, triangular, and trapezoidal VGs. Godard et al. [26] utilized PIV to measure the flow field impacted by VGs of various shapes and configurations and discovered that counter-rotating triangular VGs functioned the best and created the least resistance. Li et al. (2015) [27] researched the influence of three forms on the performance of the DU97-W-300 and discovered that while all three shapes contributed equally to lift force, the difference in drag force was substantial. Among the VGs, the triangular-shaped VG had the highest lift-to-drag ratio. According to Fouatih et al. (2016) [28], the triangular VG outperforms the rectangular type in terms of enhancing lift force and minimizing drag force, with a 21% gain in coefficient lift. However, not all researchers agree on this impact, necessitating further extensive investigation.

3.2 Vortex generator position

Figure 8. shows an airfoil device with VG facing each other, where the airfoil has a chord length, C; span length, S; position VG, x/C; and VG geometry includes, height, h/C; length, l/h; angle, β; center distance between VG pairs, p/h; tip distance between VG, f/h; rear distance between VG, r/h.

Fig. 7. Profile of VGs

Fig. 8. Position of VGs single row
VG's position may be represented as \(x/c \), where \(c \) is the chord's length and \(x \) is the chord's direction. After testing two settings in a wind tunnel, \(x/c = 0.2 \) and \(0.3 \), researchers conducted a study of the position of VG, found that \(x/c = 0.2 \) improved stall AoA and raised coefficient lift from 1.55 to 1.97 [28], on the DU97-W300, \(x/c = 0.2 \) shows the ideal lift force as well as the top and bottom drag forces, analyzed to determine the effect of location on the performance of the DU91-W2-250 airfoil and make sure \(x/c = 0.2 \) is the ideal position [29].

The National Technical University of Athens (NTUA) states that the most efficient VG reversal at \(x/c = 0.2 \) in.

3.3 Vortex generator configurations

VG orientations can be either counter-rotating or co-rotating to result from low-momentum fluid upward and high-momentum fluid downward between two adjacent VGs, co-rotating orientations create co-rotating longitudinal vortices (Fig. 9. (a)). Closely separated vortices lose their efficiency and persistence due to conflicting spinning orientations. Being able to keep the vortices close to the surface is the main benefit of co-rotating VGs. Figure 9. (b) illustrates how the upward and downward momentum transports are separated by the counter-rotating VGs. While the low-momentum part is provided uphill to the free stream between two VGs, the high-momentum part is sent downhill to the wall surrounding each VG's symmetry plane [30]. Because it transfers momentum in a non-conflicting way, the counter-rotating VG is theoretically more effective. Researchers have validated this idea through investigations on airfoil surfaces, where counter-rotating VGs exhibit double the efficiency of co-rotating VGs.

4 Influence VGs on airfoil shape

Airfoils are divided into two types, namely symmetrical (Fig. 10. (a)) and asymmetrical airfoils (Fig. 10. (b)). In vertical turbine applications, the addition of VG impacts turbine performance. Researchers have carried out many investigations to determine the influence between airfoil types, symmetrical airfoils, NACA 0015, NACA 0018, NACA 0021; asymmetrical airfoils, NACA 63(3)618, DU97-W300, DU17-DBD25, DU93-W210, National Renewable Energy Laboratory (NREL) S1210, S809, etc. shown in Table 1.
In this focusing research, the focus is the VAOT (H-Darrieus type) with symmetrical blades NACA 0021 which has several advantages such as, having a maximum thickness of 21% of the chord length, good stability, suitable for high rotation, and working at low Reynolds numbers increasing lift force and reducing drag force [36].

The Vg shapes used on turbine blades include triangle, rectangle, trapezoid. VG Position on the blade surface 5% - 25% of the chord length and counter-rotating configuration.

<table>
<thead>
<tr>
<th>Investigator, year</th>
<th>Airfoil</th>
<th>VGs Shape</th>
<th>VGs position of chord length</th>
<th>Lift increment</th>
<th>Stall angle increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yan, et al. 2019</td>
<td>NACA 0018 (VAWT)</td>
<td>Triangle, Rectangular</td>
<td>15%, 20%, 22%, 25%</td>
<td>37.5%</td>
<td>25° - 30°</td>
</tr>
<tr>
<td>De Tavernier et al. 2021</td>
<td>DU17-DBD25 (VAWT)</td>
<td>Triangle</td>
<td>20% - 40%</td>
<td>30° - 40°</td>
<td>12° - 22°</td>
</tr>
<tr>
<td>Satrio D, et al. 2023</td>
<td>NACA 0021 (VAOT)</td>
<td>Triangle</td>
<td>1%, 2.5%</td>
<td>8%</td>
<td>20° - 30°</td>
</tr>
<tr>
<td>Manolesos M, et al. 2023</td>
<td>NACA63(3)618, DU97-W300 (HAOT)</td>
<td>Triangle, Rectangular</td>
<td>30%, 34%</td>
<td>17.6%</td>
<td>10° - 25°</td>
</tr>
<tr>
<td>Kundu P, et al. 2019</td>
<td>S1210 (HAOT)</td>
<td>Triangle</td>
<td>12% - 21.4%</td>
<td>11.44%</td>
<td>10° - 12°</td>
</tr>
<tr>
<td>Alber J, et al. 2022</td>
<td>NACA63(3)618, DU97-W300 (HAWT)</td>
<td>Triangle</td>
<td>30% - 50%</td>
<td>5% - 10%</td>
<td></td>
</tr>
<tr>
<td>Parra H, et al. 2023</td>
<td>S822 (HAWT)</td>
<td>Rectangular</td>
<td>10% - 40%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Chillon S, et al. 2020</td>
<td>DU97-W300 (HAWT)</td>
<td>Triangle</td>
<td>19.5%</td>
<td>62%</td>
<td>12° - 18.18°</td>
</tr>
<tr>
<td>Li X, et al. 2019</td>
<td>DU93-W210 (HAWT)</td>
<td>Triangle</td>
<td>21%</td>
<td>48.77%</td>
<td>16° - 18°</td>
</tr>
<tr>
<td>Chng L, et al. 2022</td>
<td>SIT250 (HAWT)</td>
<td>Triangle</td>
<td>30%</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>
The summary of Table 1 shows that the VG position is between 5% and 30% of the chord length, which is widely used in research for triangular and rectangular VG shapes. Adding VGs creates increased lift, reduced drag, delayed stall, and reduced vibration. HAWT and HAOT mostly use turbines with asymmetrical blades, however VAWT and VAOT tend to use symmetrical blades.

Fig. 11 Vertical axis ocean turbine, H-darrieus type with vortex generators, [2024] (2024) BIO Web of Conferences 89, 10003 (2024) https://doi.org/10.1051/bioconf/20248910003
5 Discussion

The results of research conducted between Yan (2019) [37] and Satrio (2023) [30] using symmetrical airfoils of the Naca series type showed that there was a stall delay whose value was almost the same in the range of 20°-30° and a different increase in lift force due to differences in VGs positions during the research. This proves that the use of VGs in VAT can improve turbine performance.

Figure 12. shows the lift and drag forces performance was re-evaluated with the addition of VG, when compared with the results without VG, the performance results of the NACA 0021 blade equipped with VG showed an improvement. The lift coefficient increases up to 20% for the VG configuration with a height of 1% of the chord length, C (1%C) at an angle of attack of 20°. For a VG height of 2.5%C, the lift coefficient increases to 8%. The stall angle is also slowed from an angle of attack of 20° to 25° for a VG with a height of 1%C and from 20° to 30° for a VG with a height of 2.5%C.

Figure 13. shows, the NACA 0018 airfoil, the optimal VG position is at a chord length of 20% along the suction side of the airfoil with a rectangular shape and a mounting angle of 16°. The stall angle is delayed to 16° from 14° with MVG installation. The maximum lift force increases by 37.5% from 0.96 to 1.32, while the drag force decreases from 0.178 to 0.137 at post-stall conditions α=18°.

The VG effect is sensitive to geometry, profile, height and configuration, distance, and angle of incidence [56]. There are two types of VG arrangements, namely co-rotating and counter-rotating VGs, where two vortices roll in the same direction and are released from two adjacent co-rotating VGs. For wind turbines, the counter-rotating VG array is therefore recommended [57]. Various studies have examined the impact of height on various airfoils. The findings indicate that VGs with h = 0.2–0.5 δ (where h is the VG height and δ is the airfoil thickness) are better [58] since larger VGs typically result in increased drag but only marginally improve flow control [59].

Fig. 12. Numerical variations of (a) coefficient of lift, (b) coefficient of drag and coefficient of lift and drag in α range of 0°-40° [30]

Fig. 13.
The airflow passes through the VG at an incident angle, and a vortex is released from the leading edge of the VG. The vortex flow mixes the high-energy air flow above the boundary layer with the low-energy air flow within the boundary layer. This mixing amplifies the fluid's momentum and energy near the walls, allowing the fluid to move further along the blade surface, delaying airflow separation, and increasing lift. Studies have shown that VG successfully delays airflow separation and significantly increases airfoil lift, as well as turbine performance and Cp values for HAWT. Another major cause of the improved performance of HAWT turbines, besides efficient vorticity suppression, is the reduced sensitivity of the airfoil to roughness. Studies regarding the impact of VGs on VAWT are still inadequate because it is not known how VGs affect dynamic stopping. VG technology is a promising and successful technique in optimizing VAWT performance in the future, so it needs to be explored thoroughly and comprehensively.

6 Conclusions

A common phenomenon in turbines is airflow separation, where VGs are airflow control devices that are useful for improving turbine performance. VGs are generally used in the aviation sector, but VG is not widely used in turbines. As discussed in this paper, several researchers have estimated the possibility of using VG to improve VAWT performance. Optimal design of geometric parameters including profile, height, position, VG array configuration and row layout can significantly improve the performance of an airfoil or wind turbine. Many researchers have investigated the VG principle in controlling separate flow in airfoils, based on symmetric, asymmetric and modified airfoils. VG can significantly increase the turbine power output based on experiments and CFD analysis methods. The increase in performance is more visible in turbine experiments with the addition of VG to the blades.

Conclusions and potential research directions that require further research attention can be summarized as follows.

1. The profile and layout effects still require further development investigation.
2. VG design optimization on VAWT is still lacking. In contrast to airfoils, rotating VAT blades exhibit strong 3D aerodynamic characteristics. These effects on VG performance should be investigated for optimal design.
3. The CFD approach combined with parametric VG modelling is a potential method to improve the understanding of VG principles in large-scale full-blade wind turbines. Further efforts should be made on parametric modelling.
4. Dynamic stall is an aerodynamic feature of VAWT that occurs at low TSR. As a result, more study is needed to determine the usefulness of VGs in VAWT.
5. Ocean current turbines can encounter the same challenges in numerical analysis by employing the same type of rotor (horizontal axis turbine or vertical axis turbine). These problems include static disturbances, dynamic disturbances, 3D flow fields, and so on. Thus, research on VGs influences the performance of ocean current turbines is also meaningful. The topic of this research is VAWT, and close to that topic is VAWT; Therefore, research is focused on VAWT even though the fluid properties are not the same, whereas wind energy has high speed and low density, but ocean current energy has low speed but high density, so this will affect the lift and drag coefficients.
Acknowledgements

Please cite this paper with the following DOI: https://doi.org/10.1051/bioconf/20248910003

References

[1] Satrio D, Suntoyo, Albatinusa F, Junianto S, Musabikha S, Madi and Setyawan F O 2023 Experimental Study on Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach

for airfoils at
vortex generators for wind turbine applications

Stall Angle on the Blades of Vertical Axis Ocean Current Turbine by Attachment of Vortex Generators

vortex flow control
passive

Eng.

techniques
236
vertical axis wind turbine using design of experiments
turbine airfoil chordwise installation of the vane
performance

Yan Y, Avital E, Williams J and Cui J 2019 CFD analysis for the performance of micro
Rama
AirfoilTools.com
Fernandez
Fouatih
Godard G and Stanislas M 2006 Control of a decelerating boundary layer. Part 1: Optimization of
Huang
Abraham
Merryisha
Ghasemian
Mohamed
Ahmad M, Shahzad A, Akram F and Qadri M N M 2022 Determination of efficient configurations of
Zhu C, Feng Y, Shen X, Dang Z, Chen J, Qiu Y, Feng Y and Wang T 2023 Effects of the height and
dynamic
generators applied
generators

Effects of the height and
dynamic
generators

Dvorak
De

Research

and Lu

P 2015 Vortex
Generators

Motawej
H
522
–
31

ITBLADE Task
BLADE

Gamiz
U,

Sepulveda
25%
–
THICK
WIND TURBINE

Boyano
23
-

U,

BLADE COMMUNITY

EUROPEAN

Weight

Gamiz
U,

B/Fluids

Turbines:

N, Ouro

13
–

Manohar
S, V V

Ward
2015
–

Full

Wang
T,

Zulueta

W,

Unsteady

X K,

CFD Lett.

Chen
J,

Hsueh
Pao/Journal

Kim
H
56
–

Huang
Abraham
Merryisha
Ghasemian
Z
Ashrafi
X
Power

Huang
Abraham
Merryisha
Ghasemian
Z
Ashrafi
X
Power