Long-term filtration of particles in a porous medium

Liudmila Kuzmina and Yuri Osipov

1 HSE University, 20 Myasnitskaya st., Moscow, 101000, Russia
2 Moscow State University of Civil Engineering, 26, Yaroslavskoye shosse, Moscow, 129337, Russia

Abstract: The formation of grout sediment in the pores of loose rock increases the water resistance of the soil and strengthens the foundation. A one-dimensional model of filtration in a porous medium considers the particles transport by the flow of a carrier fluid and the deposition of particles on the framework of a porous medium. The purpose of the work is to study the concentrations of suspended and settled particles of a suspension over a long time. Exact and asymptotic methods are used to obtain a solution to the model. The exact solution is presented in an implicit integral form. A set of solutions in the form of traveling waves with an arbitrary initial condition and their asymptotics are constructed. For the exact solution, an explicit second-order asymptotic solution for a long time is obtained as an expansion in decreasing exponents. Comparison of the asymptotic solution with the traveling waves makes it possible to choose a single traveling wave corresponding to the exact solution. The closeness of the traveling wave to the exact solution of the filtration model is verified numerically. The traveling wave found determines the explicit asymptotics of the concentration of deposited particles for a long time.

Keywords. Deep bed filtration, porous medium, exact solution, asymptotics, traveling wave solution

1 Introduction

During the filtration, particles are transferred and deposited on the framework of a porous medium. Deep bed filtration assumes that particles penetrate the entire depth of the porous medium [8–11]. Various forces act on particles carried by a fluid flow: hydrodynamic, electrostatic, mechanical, etc. [12–14]. Particles can be deposited on the walls of wide pores, get stuck at the entrance of narrow pores, or enter dead-end pores. Under real conditions, depending on the physical, chemical, and geometry of the porous medium and particles, a certain retention mechanism becomes predominant. If the transverse dimensions of the pores...
and the particle diameters are of the same order, then the main capture mechanism is the size-
exclusion mechanism, in which the particles are transported through wide pores and are
blocked in the narrow pores. The deposited particles are motionless [15–17].

Basic deep bed filtration model determines the volumetric concentrations of suspended and retained particles. The sediment growth is determined by the filtration function, which depends on the current concentration of the retained particles. The simplest constant filtration function models filtration only over a short period of time. As the sediment grows, the number of vacancies for the retained particles on the porous medium framework decreases and the filtration process slows down. The decreasing filtration function allows one to model filtration over a large time interval. After a long period of filtration, the retained particles concentration stabilizes and filtration stops: all particles injected into the porous medium leave it at the exit without sediment formation. This phenomenon is described by a filtration blocking function that vanishes when the sediment limit value is reached. The most commonly used linear filtration function is called the Langmuir coefficient [18]. However, experimental studies show that the filtration function can be more complex.

In this paper, we construct the asymptotics of the filtration problem for a large time for filtration function of a general form. It is shown that the sediment concentration near the limit value is determined not only by the local behavior of the filtration function near the root, but also by the integral over the entire domain of its definition. The solution is found in the form of traveling waves. The obtained asymptotics allows us to determine the only traveling wave corresponding to the exact solution of the filtration problem.

2 Mathematical model

The dimensionless system has the form [19]

\[0 \frac{\partial C}{\partial t} + \frac{\partial C}{\partial x} + \frac{\partial S}{\partial t} = 0, \]

\[\frac{\partial S}{\partial t} = \Lambda(SC) \]

where the blocking filtration function \(\Lambda(S) \) is non-negative, decreases and vanishes at the point \(m \).

For the uniqueness of the solution the initial and boundary conditions are set. They correspond to the injection of a suspension or colloid of constant concentration into a porous medium filled with pure water without suspended and retained particles:

\[C(x,0) = C_0 \]

\[S(x,0) = S_m \]

From the inconsistency of conditions (3) and (4), it follows that the solution \(C(x,t) \) has a gap at the concentration front \(t = x \). Before the concentration front, the solution is zero, and behind the front, it is positive.

At \(t \geq x \) the solution to problem (1)-(4) is obtained in implicit form [20, 21]
For known \(S(x,t) \), the solution \(C(x,t) \) can be determined from Eq. (2), or one can use the Riemann invariant, which relates the solutions on the characteristics of the system [22, 23]:

\[
C(x,t) = \frac{S(x,t)}{S(t-x)} \tag{3}
\]

To determine the behavior of solutions for long time, consider a traveling wave on the plane \(x,t \) [24]

\[
w = -\infty \quad C = \infty \quad S = S_m \quad w = x - ut \tag{4}
\]

Equation (1) takes the form

\[
-uC' + C' - uS' = 0 \tag{5}
\]

Substitute formulae (8), (12) into equation (2):

\[
\frac{S'}{S_m} + \Lambda \frac{S}{S_m} = \frac{S}{S_m} \tag{6}
\]

Solution of problem (13), (14) has the form

\[
\int_{S}^{\frac{S}{S_m}} \frac{ds}{S \Lambda} = -\frac{S_m}{S_m} w \tag{7}
\]

Comparison of formula (15) with solution (6) shows that, at a certain value \(S \), the traveling wave is close to the exact solution.
Fig. 1 demonstrates traveling waves for problem (1)-(4) with filtration function \(\Lambda(S) = S - S_m \) for various \(S \).

Fig. 1.

3 Asymptotic solution for a long time

To find the asymptotics [25, 26], we will seek a solution to problem (1)-(4) as a series in decreasing exponents:

\[
S(x,t) = S_m + s_1 x e^{\lambda_1 t} + s_2 x e^{\lambda_2 t} + O(e^{\lambda_3 t})
\]

\[
C(x,t) = c_1 x e^{\lambda_1 t} + c_2 x e^{\lambda_2 t} + O(e^{\lambda_3 t})
\]

Let us represent the integral on the left side of Eq. (5) as

\[
I = \int_{S_m}^{S} ds \left[\frac{\lambda}{\lambda_1} \frac{S - S_m}{S - S_m} \right] =
\]

\[
= I - \int_{S_m}^{S} ds \left[\frac{\lambda}{\lambda_1} \frac{S - S_m}{S - S_m} \right] + \int_{S_m}^{S} ds \left[\frac{S - S_m}{S - S_m} \right]
\]

Substitute expansion (16) into the integral on the left side of (19). Equation (5) takes the form

\[
I + \frac{\lambda}{\lambda_1} S_m - S_m + O(S_m - S_m) + \frac{s_2}{\lambda_1} \frac{S - S_m}{S - S_m} = t
\]

Solving equation (20), we find the asymptotics in the form (17) for the function \(S(x,t) = S_m x^t \).
Similarly to formula (19), the integral (6) can be written in the form

\[\int_{S_{t-S=0}} ds = \int_{S_{t-S=0}} \frac{ds}{s} = \int_{S_{t-S=0}} \frac{ds}{\lambda s - S_m} = I \frac{\lambda}{\lambda_s} \left(S_m - S \right) + \frac{\lambda}{\lambda_s} S_m \left(S_m - S \right) + O \left(S_m - S \right) \]

Substitute expansions (21), (22) into equation (6) and obtain the asymptotics of the deposit concentration

\[S = S_m \left[-e^{-\lambda S_m} + \frac{\lambda}{\lambda_s} S_m e^{-\lambda S_m} \right] + O \left(e^{\lambda S_m} \right) \]

To find the asymptotic solution \(C(x,t) \), substitute expansions (21) and (23) into the Riemann invariant (7):

\[C = \frac{\lambda}{\lambda_s} \left(S_m - S \right) + \frac{\lambda}{\lambda_s} S_m \left(S_m - S \right) + O \left(S_m - S \right) \]

Let us find the asymptotics of the traveling wave (15) for a long time, i.e. at \(w \to -\infty \). Similarly to expansions (19) and (22), represent the integral on the left side of formula (15) in the form

\[\int_{S_{t-S=0}} ds = \int_{S_{t-S=0}} \frac{ds}{\lambda s - S_m} = I \frac{\lambda}{\lambda_s} \left(S_m - S \right) + \frac{\lambda}{\lambda_s} S_m \left(S_m - S \right) + O \left(S_m - S \right) \]

Substitute expansion (25) into (15) and obtain the asymptotics of the traveling wave solution:

\[S = S_m \left[-\frac{S_m - S}{S} e^{-\lambda S_m} \right] + O \left(e^{\lambda S_m} \right) \]
Formula (27) specifies the initial value S^t_0 for the traveling wave corresponding to the solution $S^{x\neq t}$. Note that the following terms of the asymptotics of traveling waves and exact solutions are different.

The initial value S^t_C corresponding to the solution $C^{x\neq t}$ depends on the variable x:

$$
\frac{S_m - S}{S} e^{-\lambda S} = \left(-e^{\lambda S} \right) e^{-\lambda I}
$$

4 Numerical results

Example 1. Let the filtration function be the Langmuir coefficient

$$\Lambda = \frac{1}{S}$$

Then $S^t_m = \lambda = \lambda^t, S^t_C = I = I^t, S^t_S = S^t_S = S^t_C = S^t_C = e^{-\lambda I}$

$$S = -e^{-t-x} + \left(-e^{-x} \right) e^{-\lambda S} + O\left(e^{-t} \right)$$

$$C =\left(e^{-x} - \right) e^{-\lambda S} + \left(e^{-\lambda I-x} + \right) e^{-\lambda S} + O\left(e^{-t} \right)$$

Exact solution to problem (1)-(4) behind the front

$$S^{x\neq t} = \frac{e^{t-x} - e^{-x}}{e^{t-x} + e^{-x}} \\
C^{x\neq t} = \frac{e^{t-x} - e^{-x}}{e^{t-x} + e^{-x}}$$

Formula (15) takes the form

$$\int_{S^t = S^t} \frac{ds}{S} = -w$$

Solutions to equation (15)

$$S^{w\neq w} = \frac{S}{-S^t e^{-w} + S}$$

Substituting the initial conditions gives

$$S^{TWS \neq w} = \frac{e^{-w}}{e^{-w} + } \\
C^{TWS \neq w} = \frac{-e^{t-x} e^{w} + }$$

Fig. 2 shows the exact solution, the asymptotics, and the traveling wave at the porous medium exit.
Fig. 2. Exact and asymptotic concentrations S and C at $x = 1$ for the Langmuir coefficient.

For $x=1$, the exact solution C coincides with the selected traveling wave.

Example 2. Let

$$
\begin{align*}
\Lambda S &= \square - S^2 \\
S_m &= \square \lambda_a = \square \lambda_c = \square I &= \square (\square - \square + S^2) \\
S^2 &= \sqrt{\square - \square} S^2 \\
\text{Asymptotics (23) takes the form} \\
S &= \square - \square e^{-1 - x} + \square \left(\square - \square e^{-1 - x} \right) e^{-1 - x} + O(e^{-1}) \\
C &= \square + \square \left(\square - \square e^{-1 - x} \right) e^{-1 - x} + O(e^{-1})
\end{align*}
$$

Exact solution to problem (1)-(4) is written in explicit form:

$$
\begin{align*}
S(x,t) &= \frac{e^{t - x} - \square}{\sqrt{\left(e^{t - x} - \square \right)^2 + \square e^t}} \\
C(x,t) &= \frac{(e^{t - x} + \square)(e^t - \square)}{(e^{t - x} - \square)\sqrt{(e^t - \square)^2 + \square e^{t + x}}}
\end{align*}
$$

Formula (15) takes the form

$$
\int_{S^0}^S \frac{ds}{S - S^0} = \square - \square W
$$

Solution to equation (30)

$$
S[W] = \frac{S}{\sqrt{\square - S^2 e^w + S^2}}
$$

$$
S_{TWS}[W] = \frac{\square}{\sqrt{\square - \square e^w + \square}} \\
C_{TWS}[W] = \frac{\square}{\sqrt{\square e^w + \square}}
$$

Fig. 3 presents the exact solution, asymptotics and traveling waves separately for the concentrations S and C.
Fig. 3. Exact and asymptotic concentrations S and C at $x = \frac{x}{1}$.

The selected traveling wave, the asymptotics, and the exact solution practically coincide at $t > \bar{t}$.

5 Discussion

The asymptotics approximate the exact solutions well for a sufficiently long time, see Fig. 2 and 3. A comparison of the asymptotic solutions shows that, with an appropriate choice of the initial condition, the traveling wave approximates the solution with the same accuracy as the second order asymptotics. This means the importance of finding traveling waves for filtration problems.

A set of solutions in the form of a traveling wave can be obtained for systems of equations whose coefficients do not explicitly depend on time and spatial coordinates. The traveling wave is given implicitly, as well as the exact solution. To choose a specific traveling wave that approximates the solution of the filtration model, it is necessary to compare the asymptotics of the exact solution and the traveling waves.

The advantage of the asymptotic expansion is the explicit form of the analytic formulae. To solve the inverse filtration problem by an asymptotic method, explicit formulae are required [29]. Thus, when solving the filtration problem, it is useful to study both traveling waves and the asymptotic solutions.

6 Conclusions

- The exact solution to the filtration problem is given in an implicit form.
- An asymptotic expansion of the exact solution up to the second order is obtained.
- A set of solutions in the form of a traveling wave is found.
- A single traveling wave is found that optimally approximates the exact solution for a long time.
- The found explicit analytical formulae make it possible to control the model parameters during experiments.
References

22. B.L. Rozhdestvenskii, N.N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (AMS, 1983)

25. V.P. Maslov, V.I. Arnold, V.S. Buslaev, Theory of perturbations and asymptotic methods (Dunod, 1972)

https://doi.org/10.1051/bioconf/202410703003