Coloronyms in water resource (on the material of German and Kyrgyz languages)

Gulzada Azimkanovna Beksultanova*, Zhazgul Begaliyeva Beishenova2, Nazgul Bolotbekova Dzharkinbaeva2, Baktygul Askerbekovna Sulaimanova2

1International University of Kyrgyzstan, Kyrgyz Republic, Bishkek
2Bishkek State University named after K. Karasaev, Bishkek, Kyrgyz Republic

Abstract: The article is a detailed analysis of linguocultural aspects of the use of coloronyms in professionally marked units, namely in the context of water resources. The paper points out the relevance of the study due to the comparison between the color concept in German and Kyrgyz languages in the spheres of human perception of water resource coloronyms and the relative insufficiency of research on color denotation and color perception in professional communication. This article uses a linguocultural approach, which serves to systematize extensive linguistic material and identify universal and national-cultural peculiarities in the use of color names in water resources. The results of the study can be useful for linguists, cultural studies, and specialists in the field of water resources, as well as for the developers of special terminological dictionaries and training materials for professionals working in water resources.

Keywords: coloronyms, water resources, achromatic, and chromatic coloronyms.

Introduction

Does the color of the sea depend on the reflection of a blue sky? The North Sea and the Baltic Sea are rather grey-brown, even in clear weather and cloudless skies. In the Caribbean, there may be shallow areas that are a surprising turquoise color, independent of the color of the sky. The ocean can also turn a bright red color, even without a sunset reflecting on its surface. And a bright green sea can exist independently of the green glow of the northern lights. Astronauts instantly recognize the character of the Earth when looking at it from space. It stands out as a bright blue color, in contrast to the sandy yellow of Venus and the ironstone red of Mars. Not only do oceans occupy a third of our planet's surface, but their color affects the reflection of sunlight. Of course, only oceanographers and climatologists can answer this question. Ordinary people describe water resources: lakes, seas, rivers, and oceans with such coloronyms as they see them.

In this article, we investigated in more detail exactly the coloronyms we use when describing water resources in German and Kyrgyz. The term “coloronym” comes from the Latin word color, orism - color, and the Greek word onymos - name. A coloronym is a general

* Corresponding author: gulsadab@bk.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
concept that unites all simple, complex, and compound units that denote primary (black, white, grey) and secondary colors (red, yellow, blue), their shades, as well as names of undefined colors, including associative units of different types. The term “coloronym” is used as a general term for all categories of color and shades. Colonyms are subdivided into chromatisms, achromatisms, exonyms, and occasionalism (chromatic and achromatic coloronyms) as part of further classification. [6]

Materials and research methods

Specially marked lexical units that belong to the category of coloronyms, including both coloronyms themselves and words formed on their basis, were selected for the study. The materials were collected through a complete review of specialized dictionaries, reference books, and online sources. In addition, coloronyms describing water resources, their meanings, and their uses in the context of water resources in German and Kyrgyz were used for the analysis of color-related language systems.

The methods of structural-semantic analysis were used in the article to study the meaning, structure, and functioning of linguistic elements of coloronyms used in water resources. The method of comparative analysis was aimed at identifying similarities and differences in the system of coloronyms in the German and Kyrgyz languages. The descriptive method was used to systematize and interpret the structural-grammatical and lexical-semantic features of coloronyms.

Research findings

A closer look at the expanse of the sea reveals an almost inexhaustible variety of shades: steel blue in the open ocean, shimmering turquoise in coral reef lagoons, dull blue, almost gray, under thick clouds that cast shadows on the water, the silvery sheen of the reflected sun, like small comets dancing on the surface, and then again dark green or sometimes even brown, as seen on the shores of the North and Baltic Seas. The seas are not just represented in a blue color scheme.

There are many coloronyms that can be used to describe water: waters, sea, lake, rivers and oceans, including:

1. Blue, azure (hellblau, blaulich, azurblau, kogush, kogultur, achyk kok) - this color is often associated with clear, clean water, especially in the context of the sky or seawater. Color is absorbed by water and scatters back to the surface, including our eyes, which is why we see water as blue. It absorbs red light and scatters blue light in all directions. The water molecules act as scatterers, making the sunlight blue. As a result, we do not see the other colors of the rainbow, such as red, because they are completely absorbed by the water molecules. Deepwater has a richer blue color because it has more water molecules that are involved in light scattering [7]. On the contrary, water in a swimming pool may not look as strongly blue because the pool is not deep enough to create such a saturated color.

In German, the adverb hell, tiefe, or the suffix -lich and the secondary color blau are used to describe this color, and can also be said simply blau, blaulich. For example, der blaue See, das blaue Wasser, blau wie Wasser/Eis, tieflauere Seen. This coloronym can be used as a noun das Blau and means one of the qualities of water resources (oceans, sea, lakes) blueness and blue. In the Kyrgyz language, the chromatic color kok gets the suffix -ush, and by softening the consonant, the word kogush is obtained. Also in the Kyrgyz language, there is a synonym for the coloronym kogush - kogultur. In Kyrgyz, the meaning of kok is reinforced by postpositions and words such as achyk, kopp-, -mol, kochkul. For example, achyk kok, koppok, kochkul kok,
kogultur kol, kok darya, kogush suu, suudai kok, kok zhylgayak, kokmol suu, kok kashka suudai tazalyk.

2. bluish-green, turquoise, emerald (bläulich-grün, blaugrün, grünlich, türkis, kök zhashyl, korgultur zhashyl, achyk zhashyl) - this color can be used to describe water with a mix of blue and green tones, such as the sea near the coast. Sea water turns green due to the presence of chlorophyll in phytoplankton. Different species of phytoplankton affect the coloration of the water, and some of them, such as coccolithophores, have a calcareous skeleton. This skeleton can change its green color to milky turquoise due to its white coloration [7]. The color türkis often describes the sea on a sunny day, it is a bright green-blue color. In German, the adjective türkis is an indeclinable adjective, but in colloquial language, there are declensional forms in the positive degree. For example, Die Luft ist klar und rein, der unter ihm liegende See leuchtet türkis [4, 85] Dschungelhügel, Kolibris an den Blüten, turnende Eichkätzchen, dahinter weißer Sand und türkische Meereswellen [5] These coloronyms are shades of primary colors.

3. Blue (graublau, boz) - this shade of color can be used to describe water, especially in the case of fog or haze over the surface of the water. For example, Die Wasseroberfläche der Nordsee ist im Herbst oft graublau [8]. In the Kyrgyz language, along with boz, shades of bozomtuk, bozomuk, bozala are also used. For example, Koldun ustusty bozomuk bolup turdu. Şuun tunuk emes bozala. Kyrgyzstan has such water resources as lakes, rivers, and springs. Since Kyrgyzstan is a mountainous country; it has a lot of fresh water. Therefore, the Kyrgyz language often uses the coloronym kok to describe water. Water itself is transparent, i.e. colorless, only by the influence of physical and biological interactions it changes color and gets the color we see.

Discussion

Based on the above data, it can be concluded that the German and Kyrgyz languages use the same coloronyms and their connotations, such as blue, green, turquoise, and blue to describe water resources. In addition, in both German and Kyrgyz, coloronyms can appear as nouns and verbs. The only difference between the two languages is that in Kyrgyz, the varied shades are formed with the help of various word-forming suffixes, afterwords and particles. "In the process of historical development of any language under the influence of linguistic and extra-linguistic factors, changes in semantic relations occur in most words, as a result of which figurative (connotative) meanings appear. The figurative/connotative meaning is usually motivated through the direct one. It occurs based on the similarity of objects in shape, color, character of movement, etc. According to a rather common view, there is a general tendency in all languages to move from the concrete to the abstract. This also applies to adjectives of color. The proportion of the denotative content in the lexical meaning of a word depends on the nature of the visual-sensory representation. The more generalized, abstract visual-sensory representation, the smaller the share of denotative content" [1, 96].

Conclusion

Studies of coloronyms in water in German and Kyrgyz languages have revealed that both German and Kyrgyz languages use primary colors (blau, grün, kok, boz, zhashyl) and their shades (bläulich, hellblau, tießblau, blaugrün, graublau, kogultur, kogush, bozomuk), as well as achromatic (grau, boz) and chromatic (blau, grün, kok, zhashyl) coloronyms. There are both similarities and differences in the use of coloronyms in both languages, which are mainly due to the diversity of landscapes, natural conditions, and cultural features. The study and analysis of coloronyms remain an important task of linguistics, especially in the context of teaching German to ecology students.
References

3. Yudakhin K.K., Kyrgyz-Russian dictionary, B., 2019
6. https://sinonim.org/t/%D0%BA%D0%BE%D0%BB%D0%BE%D1%80%D0%BE%D0%BD%D0%B8%D0%BC
8. https://www.verbformen.de/deklation/adjektive/graublau.htm