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Abstract. This study develops a flow direction prediction model using 

Sentinel-1 satellite imagery during rainy and dry seasons through the 

Random Forest machine learning algorithm. The pre-processing stage 

includes radiometric calibration, terrain flattening, speckle filtering, and 

Doppler terrain correction. The processed DEM data is used to extract key 

topographic parameters: elevation, slope, and curvature, which are then 

utilized in the model. The model is built with 500 trees (n.trees), using a 

mtry of 2 for the rainy season and 3 for the dry season, and out-of-bag (OOB) 

error estimates of 8.76% and 9.32%, respectively. Model evaluation, 

conducted through a confusion matrix, reveals high performance, with 

average Overall Accuracy, Kappa Accuracy, User Accuracy, Sensitivity, 

and Specificity all at 0.98 or above. The analysis shows that during the rainy 

season, flow direction predominantly shifts northeast (16.48%), while in the 

dry season, it shifts northwest (16.85%). Slope significantly influences flow 

direction, with feature importance scores of 60.76% in the rainy season and 

63.53% in the dry season. Slope is crucial as it dictates the speed and 

direction of water flow under gravity. This model could significantly 

contribute to geothermal field management by accurately predicting surface 

water flow, enhancing monitoring, and promoting sustainable water 

resource management.  

1. Introduction 

A deep understanding of surface water flow direction in geothermal fields with complex 

topography and seasonal climate variations is crucial for various environmental and 

engineering applications [1, 2]. Accurate prediction of water flow direction not only supports 

efficient water resource management but also ensures the sustainability of geothermal field 

operations. However, modeling flow direction presents significant challenges, particularly in 

capturing the dynamic conditions that occur during seasonal changes, such as rainy and dry 

seasons [3]. Traditional methods are often less effective in accommodating these variations 

due to their reliance on static models that do not adequately consider temporal changes in 
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topography and water flow. These limitations are particularly critical in geothermal fields, 

where accurate monitoring and prediction of surface water flow are essential for managing 

groundwater reservoir recharge and supporting sustainable energy extraction. The study by 

E. E. Tantama et al., 2021, emphasizes that a precise understanding of flow direction can 

significantly enhance geothermal production efficiency and reduce environmental impacts 

[4]. Effective water flow management not only maximizes energy recovery but also 

contributes to more sustainable geothermal systems. This strategic approach is essential for 

developing geothermal energy solutions that are both reliable and environmentally 

responsible, ensuring the preservation of vital water resources for future needs [5, 6]. 

The primary objective of this study is to develop an accurate surface water flow direction 

prediction model using DEM data processed with the Lee Sigma filter, utilizing the Random 

Forest (RF) algorithm [7]. This approach aims to optimize the reliability of the model by 

carefully selecting hyperparameters, including the number of trees (n.trees) and adjusting the 

mtry value to account for seasonal variations [8]. Specifically, the study explores the use of 

a lower mtry value during the rainy season and a slightly higher value during the dry season 

to achieve optimal performance. The secondary objectives include evaluating the model's 

effectiveness under different seasonal conditions and assessing its accuracy through metrics 

such as Overall Accuracy, Kappa Accuracy, Sensitivity, Specificity, and User Accuracy [9]. 

Additionally, the research seeks to identify the most influential topographic parameters, with 

a particular focus on the role of slope in determining flow direction [10]. 

In the study by Hu et al. (2024), it is mentioned that conventional methods such as 

hydrogeophysical tracking, tracer methods, and injection techniques have been used to 

monitor groundwater flow direction. However, this study introduces an innovative approach 

by utilizing Sentinel-1 satellite imagery combined with the Random Forest machine learning 

algorithm, which is capable of predicting surface water flow direction with high accuracy in 

geothermal areas. The novelty of this research lies in the model's ability to dynamically 

capture seasonal variations, especially in identifying significant changes in water flow 

conditions during rainy and dry seasons, which is difficult to achieve with conventional 

methods [11]. Meanwhile, the study by Hao et al. (2023) discusses the seasonal dynamics of 

water circulation and exchange flows in shallow lagoon-inlet-coastal ocean systems. In this 

context, flow direction analysis was conducted based on DEM data obtained from Sentinel-

1 imagery and applied to geothermal system monitoring. This approach not only enhances 

the reliability of water flow predictions but also provides a more advanced tool for sustainable 

water management in geothermal areas, highlighting the novelty in the application of satellite 

technology and spatial analysis algorithms for sustainable water management in geothermal 

systems [12]. 

2. Research Methods 

This study utilizes Sentinel-1 satellite imagery to predict surface water flow direction in 

geothermal areas during the rainy and dry seasons (Fig. 1). The first step involves data 

preprocessing, where the images captured during both seasons undergo several essential 

processes, including radiometric calibration, radiometric terrain flattening, speckle filtering 

using the Lee Sigma and Refined Lee methods, and Range Doppler Terrain Correction [13]. 

This process generates a Digital Elevation Model (DEM), which is then validated using 

statistical metrics such as RMSE, MRE, and MAE to ensure data quality and accuracy [14]. 

Once the DEM data is prepared, key parameters such as elevation, slope, and curvature 

are calculated for each pixel of the imagery. This data is combined with flow direction data 

from DEMNAS to create a training dataset, which is then split into 70% for training the 

model and 30% for testing. The study assumes that the seasonal variations in Sentinel-1 

imagery are significant enough to influence the prediction of water flow direction and that 
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radiometric terrain correction can reduce distortion caused by terrain topography, thereby 

enhancing model reliability[15]. 

The Random Forest (RF) machine learning model is employed to predict water flow 

direction, with hyperparameters such as the number of trees (n.trees), the number of variables 

tried at each split (mtry), and the out-of-bag (OOB) error rate being tuned for optimal 

performance [15]. The model is evaluated using metrics like Overall Accuracy, Kappa 

Accuracy, User Accuracy, Sensitivity, and Specificity, ensuring the model's robustness under 

various conditions [16]. 

The assumptions made in this study, such as the presumption of homogeneous DEM data, 

may impact the final predictive accuracy of the model. Therefore, the study also evaluates 

the importance of each feature (elevation, slope, curvature) in the final model, providing 

further insights into the factors influencing water flow direction and supporting more 

sustainable water resource management in geothermal areas [17]. 

 
Fig. 1. Research Workflow 

3. Results and Discussion 

3.1 Results of Pre-Processing 

In this study, the pre-processing stage was conducted systematically to produce accurate 

DEM data from Sentinel-1 satellite imagery, covering both rainy and dry seasons. This 

process began with radiometric calibration to ensure that the imagery used had high spectral 

accuracy. Following this, radiometric terrain flattening was applied to eliminate the effects 

of topography on the radar imagery, which was then followed by speckle filtering using the 

Lee Sigma and Refined Lee filters. These methods were chosen for their ability to reduce 

speckle noise without sacrificing important details in the imagery. The final step of pre-

processing was the Range Doppler Terrain Correction, performed to correct geometric 

distortions in the imagery caused by satellite platform movements  [13, 14]. 

Based on the visualization results of the DEM from both speckle filtering methods, Lee 

Sigma and Refined Lee, it is evident that the DEM generated using the Lee Sigma method 

during both the rainy and dry seasons exhibits clearer topographic details (Fig. 2). Scientific 

analysis supported by metric statistics (Table 1) shows that the Lee Sigma method has lower 

RMSE and MAE values compared to the Refined Lee method, particularly during the rainy 

season, with an RMSE of 5.62 and an MAE of 4.9. Although the MRE values between the 

two methods are very similar and consistent, the lower RMSE and MAE values of the Lee 
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Sigma method indicate that this DEM is more accurate and has less prediction error. 

Therefore, the DEM produced using the Lee Sigma method, especially during the rainy 

season, can be considered a more optimal input data for the machine learning process in 

predicting water flow direction in geothermal fields. The selection of this DEM as the basis 

for machine learning parameters is expected to enhance the accuracy and reliability of the 

developed prediction model [13, 14]. 

 
Fig. 2. Results of Final DEM from Range Doppler Correction on Sigma Lee and Refined Lee Filters 

Table 1. Results of Metric Statistics 

Season 

Speckle 

Filtering 

Method 

Metric Statistics 

RMSE MRE MAE 

Rainy 

Lee 

Sigma 
5.62 0.01 4.9 

Refined 

Lee 
5.82 0.01 5.07 

Dry 

Lee 

Sigma 
5.83 0.01 5.1 

Refined 

Lee 
5.86 0.01 5.1 
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3.2 Results of Hyperparameters 

The comparison of hyperparameters based on seasons indicates that the selection of the 

number of randomly selected predictors (mtry) has a significant impact on the accuracy of 

the Random Forest (RF) model. During the rainy season (Fig. 3), the highest accuracy is 

achieved when mtry is set to 3, with a noticeable decrease in accuracy as mtry increases to 8. 

A similar pattern is observed during the dry season (Table 2), where the highest accuracy is 

also achieved with an mtry of 3, but it declines sharply as mtry increases to 7. These results 

suggest that, for both seasons, using a smaller mtry value tends to produce a model with better 

performance. The appropriate selection of mtry is crucial in building a reliable RF model, as 

it determines how many predictors are considered at each split in the decision tree formation 

process. Therefore, selecting an optimal mtry can significantly enhance the accuracy and 

reliability of the prediction model, especially when accounting for seasonal variations in 

geothermal fields [15]. 

 
Fig. 3. Results of Cross Validation Hyperparameters (a) Rainy Season and (b) Dry Season 

Table 2. Results of Best Hyperparameters 

Hyperparameters 
Season 

Rainy Dry 

n.trees 500 500 

mtry 2 3 

the out-of-bag 

(OOB) 
8.76 9.32 

3.3 Results of Flow Direction Model using Random Forest (RF) 

The analysis of the flow direction prediction model developed using the Random Forest 

algorithm reveals significant differences in the dominant flow direction between the rainy 

and dry seasons (Fig. 4). Based on the visualization results, during the rainy season, the flow 

direction is predominantly shifted towards the Northeast with a percentage of 16.48%. 

Conversely, in the dry season, the dominant flow direction shifts to the Northwest with a 

percentage of 16.85%. The RF model effectively captures these dynamics, demonstrating 

high reliability in predicting flow direction according to the prevailing seasonal conditions. 

These findings are crucial for practical applications, particularly in water resource 

management and infrastructure planning in geothermal fields, where understanding changes 

in flow direction is essential for sustainability and operational efficiency [18]. 
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Fig. 4. Results of Flow Direction using Random Rorest (RF) 

3.4 Results of Model Evaluation 

The evaluation of the flow direction prediction model using a confusion matrix indicates that 

the Random Forest algorithm is capable of classifying flow directions with a high level of 

accuracy for both the rainy and dry seasons. In the confusion matrix (Fig. 5) for the rainy 

season (a), the prominent diagonal suggests that the majority of the model's predictions align 

with the actual values, with only a few misclassifications across some directions. Similar 

results are observed during the dry season (b), where most predictions fall along the diagonal, 

indicating accurate predictions. However, there is a slight shift in misclassifications, 

reflecting the changes in dominant flow directions between the two seasons. This evaluation 

confirms that the Random Forest model is highly reliable in predicting flow directions 

according to seasonal conditions, which is crucial for planning and managing water resources 

in geothermal fields [16]. 

The accuracy testing, which involved Overall Accuracy and Kappa Accuracy (Fig. 6), 

shows that the Random Forest (RF) model performs consistently well in both the rainy and 

dry seasons. According to the test results, the Overall Accuracy for both seasons reached 

0.98, indicating that the model is capable of classifying flow directions with a very high level 

of precision. Additionally, the Kappa Accuracy, which measures the agreement between the 

model’s predictions and the actual data after correcting for the possibility of random 

agreement, also shows high values, 0.97 in the rainy season and 0.98 in the dry season [19].  
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The accuracy testing, which involved Sensitivity, Specificity, and User Accuracy (Fig. 

7), demonstrates that the Random Forest (RF) model performs consistently and robustly in 

predicting flow direction in both the rainy and dry seasons. According to the test results, 

Sensitivity and Specificity values for nearly all flow directions reached 0.99, indicating that 

this model is highly reliable in detecting the correct flow directions (Sensitivity) as well as 

in identifying incorrect directions (Specificity). The role of Sensitivity in the RF model is 

crucial as it ensures the model effectively captures all true occurrences, which is particularly 

relevant in the context of precise water resource monitoring. Specificity, on the other hand, 

plays a role in ensuring that the model does not produce false positives, thus maintaining 

accuracy and efficiency in decision-making. The high User Accuracy values, with most 

above 0.98, indicate that the model's predictions align closely with the actual observed data, 

providing confidence that the model's results are reliable for field implementation [20]. 

 
Fig. 5. Results of Confusion Matrix (a) Rainy Season and (b) Dry Season 

 
Fig. 6. Results of Overall Accuracy and Kappa Accuracy 
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Fig. 7. Results of Sensitivity, Specificity, and User Accuracy (a) Rainy Season and (b) Dry Season 

3.5 Results of Feature Importance 

The analysis of feature importance reveals that the parameters of elevation, slope, and 

curvature each play distinct roles in constructing a reliable model for predicting flow 

direction. Qualitatively, elevation provides a foundational understanding of terrain height, 

helping to establish the general flow from higher to lower areas. However, its direct impact 

is quantitatively less significant, as reflected by its lower feature importance scores of 10.53% 

during the rainy season and 10.06% during the dry season. In contrast, slope emerges as the 

most critical factor both qualitatively and quantitatively. Slope directly influences how water 

moves across the landscape, with steep areas leading to faster flow and flat areas potentially 

leading to pooling. This importance is quantitatively supported by high feature importance 

scores of 60.76% in the rainy season and 63.53% in the dry season. Curvature also plays a 

significant role by shaping the terrain’s surface, influencing how water converges in concave 

areas or diverges in convex areas. While its influence is quantitatively less than that of slope-

28.71% in the rainy season and 26.41% in the dry season-curvature remains crucial for 

refining the model's predictions. Together, these qualitative insights and quantitative data 

ensure that the model accurately accounts for the height, shape, and gradient of the terrain, 

leading to robust predictions of flow direction under different seasonal conditions [17]. 
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Fig. 8. Parameters Used to Build the Flow Direction Model 

 
Fig. 9. Results of Feature Importance 

3.6 Discussion 

The pre-processing results tested using metric statistics show that the DEM processed with 

the Lee Sigma filter has lower RMSE, MAE, and MRE values compared to other filters, 

making it the chosen data input for building the Random Forest (RF) model to ensure higher 

accuracy and reliability [14, 21]. The best hyperparameters results indicate that using 500 

trees (n.trees) with a lower mtry value (2) during the rainy season and a slightly higher value 

(3) during the dry season provides optimal performance, as reflected in the low out-of-bag 

(OOB) error rates of 8.76% in the rainy season and 9.32% in the dry season [15]. The RF 

model effectively captures the shifts in flow direction, predominantly towards the Northeast 

during the rainy season (16.48%) and shifting to the Northwest during the dry season 

(16.85%), demonstrating the model's reliability in predicting flow direction according to 

seasonal conditions [22]. The high Overall Accuracy and Kappa Accuracy further affirm the 
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RF model's robustness and reliability in predicting flow directions across various seasonal 

conditions [19]. Additionally, strong Sensitivity, Specificity, and User Accuracy confirm the 

model's precision in identifying flow directions with low error rates, making it suitable for 

practical applications in water resource management and geothermal infrastructure planning 

[20]. Slope, as the dominant parameter in both seasons, with feature importance values of 

60.76% during the rainy season and 63.53% during the dry season, significantly influences 

flow direction as the gradient determines the speed and gravitational pull that affect water 

flow, causing the flow to follow the path with the steepest slope [17]. 

The changes in flow direction reflect the impact of seasonal variations on water flow 

patterns in the studied area, highlighting the need to consider additional parameters such as 

changes in rainfall intensity and evaporation patterns that contribute to shifts in flow direction 

in future research. Rainfall intensity and evaporation patterns are derived from satellite data. 

Rainfall intensity is obtained from the processing of CHIRPS satellite data, while evaporation 

patterns are derived from NDVI, the SEBAL model (Surface Energy Balance Algorithm for 

Land), SMAP (Soil Moisture Active Passive), and MODIS (Moderate Resolution Imaging 

Spectroradiometer) [23–26]. This research provides insights that can support the monitoring 

and sustainability of surface fluids in geothermal fields and ensure sustainable water 

management in geothermal areas. 

4. Conclusions 

The conclusions and recommendations derived from this study are as follows: 

• Model Development: The optimal selection of hyperparameters, including the use of 

500 trees (n.trees) and adjusting the mtry value according to seasonal variations (mtry 

= 2 during the rainy season and mtry = 3 during the dry season), has been shown to 

significantly enhance the reliability of water flow direction predictions. 

• Seasonal Variation Analysis: The model successfully identified significant shifts in 

flow direction, with a predominance towards the Northeast (16.48%) during the rainy 

season and towards the Northwest (16.85%) during the dry season, demonstrating the 

model's sensitivity to seasonal changes. 

• Model Performance Evaluation: The evaluation metrics indicate excellent model 

performance, with an Overall Accuracy of 0.98, Kappa Accuracy ranging from 0.97 to 

0.98, Sensitivity and Specificity both at 0.99, and User Accuracy above 0.98, reflecting 

a very low error rate in predictions. 

• Feature Importance Identification: Slope was identified as the most dominant 

parameter influencing flow direction, with feature importance values of 60.76% during 

the rainy season and 63.53% during the dry season, underscoring its critical role in the 

prediction model. 

• Recommendation: Based on these findings, it is recommended that future research 

integrates additional parameters such as rainfall intensity and evaporation patterns—

derived from satellite data like CHIRPS, NDVI, SEBAL, SMAP, and MODIS—to 

further refine flow direction models and enhance the monitoring and sustainability of 

surface fluids in geothermal fields, ensuring more effective and sustainable water 

management. 
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