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Abstract. Forest ecosystems are vivid representatives of open non-

equilibrium systems. The existence of extreme principles in "ecological 

thermodynamics" is a subject of discussion in the works of many physicists, 

ecologists and researchers dealing with non-equilibrium thermodynamics. 

At the same time, the problem of the connection between the principles of 

maximum and minimum entropy production has been studied in detail 

enough in the works of L. M. Martyushev et al. However, for forest 

ecosystems, the works that point out the connection of these fundamental 

principles are clearly insufficient. Usually, these principles are opposed to 

each other. In the proposed work, within the framework of a unified 

approach, the dependencies of the entropy production density and the 

entropy density have modeled using the example of a pine (Pínus sylvestris) 

stand of the 1-grade forest site capacity. It has shown that entropy production 

and entropy production density take both maximum and minimum values in 

the process of ecosystem evolution. 

1 Introduction 

In forest ecosystems modelling, silvicultural constants play a very significant role, in 

particular the time of reaching the maximum value of the forest stand biomass [1], the value 

of the biological maturity age [2], and the base age in the dynamic growth model [3]. Usually 

the use of such constants increases the accuracy of modelling. Although, as it is known [4], 

the modelling approximates reality, but does not duplicate it or reproduce it exactly, because 

it is impossible due to the high complexity of the modelled object (in this case, we are talking 

about forest ecosystems). 

The application of such constants in modelling is of particular importance in calculations 

of an important thermodynamic characteristic of open non-equilibrium systems, which 

undoubtedly include forest stands: entropy density and entropy production density [5] 

(hereinafter, for short, entropy and entropy production). At present, the question of applying 

the second law of thermodynamics to biological and ecological problems is still debated [6], 

and both issues related to the definition of the entropy concept itself and to the formulation 

of extreme principles of entropy production are touched upon. It seems to us that these 

problems are generally solved in the works of L.М. Martyushev [7, 8]. We consider 
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especially important the question of the connection between the Maximum entropy 

production principle (Maximum entropy production principle MEPP) and Prigozhin's 

principle of minimum entropy production [9, 10]. According to the conclusions in the works 

of L.M. Martyushev et al. (for example, see [7, 8]), these are absolutely different variational 

principles, in which although the extremum of the same function (entropy production) is 

sought, but different constraints and different variation parameters are used. These principles 

need not be contrasted, since they are applicable to different stages of the evolution of a 

nonequilibrium system. A hierarchy of processes in the ecosystem is observed. On small 

timescales, the system maximises entropy production at given fixed generalised forces at the 

considered time moment, and as a result the MERR principle is valid. On large time scales, 

the system starts to vary free generalised forces and entropy production decreases, reaching 

a minimum value in accordance with Prigozhin's principle [9, 10]. 

In our works [11, 12], based on the silvicultural constant (the time of reaching the 

maximum value of the plantation biomass tmax) it has obtained that entropy production for 

forests reaches the minimum positive value in accordance with Prigogine's principle, and the 

value of entropy at this point in time has obtained. In the present work, using the MERR 

principle and an important constant from our point of view – the age of biological maturity 

tinf a model of calculation of entropy density and entropy production density for pine (Pínus 

sylvéstris) stands of 1-grade in a wide interval of time was developed in a wide range of ages 

from 10 to 300 years. The starting point of the proposed model is the method of calculation 

of stand growth dynamics based on the thermodynamic approach [1], which we developed 

earlier and improved in [2, 12]. 

2 Materials and methods 

The entropy balance, dS of an open ecosystem can be represented as 

dS = diS + deS          (1) 

where diS is the entropy change caused by internal processes; deS is the entropy change 

caused by by external exchanges. While diS is always positive, as dictated by the second law, 

the second term of the equation deS can be negative and numerically greater than diS. 

Allowing the resulting entropy balance of the system to be negative as well. According to 

(1), the rate of entropy change will take the form 

𝑑𝑆

𝑑𝑡
=

𝑑𝑒𝑆

𝑑𝑡
+

𝑑𝑖𝑆

𝑑𝑡
       (2) 

Let us further consider a stand of trees with biomass M. Theoretically, we should expect 

that the main contribution to entropy change comes from two processes: total biomass growth 

and cell division. To separate these effects, we consider the change in specific entropy 

(entropy density), that is, the entropy per unit of biomass σ = S/M: 

dS/dt=M dσ/dt+σ dM/dt                     (3) 

The process of differentiation leads to a decrease in specific entropy, as the order in the 

system increases, and biomass growth corresponds to the positivity of the dM/dt derivative, 

i.e., the change in ecosystem entropy is determined by the combination of negative 

(differentiation) and positive (growth) derivatives. From equations (2) and (3) we have 

𝑑𝑆

𝑑𝑡
=

𝑑𝑖𝑆

𝑑𝑡
− |

𝑑𝑒𝑆

𝑑𝑡
| =  𝑀

𝑑𝜎

𝑑𝑡
+ 𝜎

𝑑𝑀

𝑑𝑡
         (4) 

The minus sign corresponds to an increase in the orderliness of the system until the 

stationary state is reached. For this purpose, we present the expression for entropy in the form 
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S = σM = ρσV, where ρ is the biomass density, and V is the stand volume. Following [4, 11], 

suppose that 

𝑑𝑖𝑆

𝑑𝑡
= 𝛼(𝑡)𝑀,       

𝑑𝑒𝑆

𝑑𝑡
= 𝛽(𝑡)𝐹        (5) 

where α and β are time functions subject to the formalised modelling process, and F is the 

surface area of the stand. Note that the functions α and β have a similar meaning as the 

corresponding terms in the definition of entropy change with time t in a local unit volume [9, 

10]: 

𝑑𝑠

𝑑𝑡
= 𝜎 − 𝑑𝑖𝑣𝑱s       (6) 

σ = ∑ 𝑋𝑖𝐽𝑖𝑖  ,         (7) 

where s is entropy density; σ is entropy production density (On the basis of the second 

beginning of thermodynamics, entropy production is always greater than or equal to zero. In 

our notation, σ is the entropy density, not the entropy production density.); Js is entropy flux 

density vector, additively depending on generalised thermodynamic flux densities Ji; Xi are 

generalised thermodynamic forces (depending on the problem conditions index i is used to 

denote both different fluxes and vector components). 

Using (4) taking into account relations (5) of entropy production density, we have 

𝑑𝜎

𝑑𝑡
+

𝜎

𝑀

𝑑𝑀

𝑑𝑡
= 𝛼(𝑡) − 𝛽(𝑡)

𝐹

𝑀
            (8) 

We have obtained an inhomogeneous first order differential equation whose general 

solution is well known [13]. For the equation of the form 

𝑑𝑦

𝑑𝑥
+ 𝑓(𝑥)𝑦 = 𝑔(𝑥) ,      (9) 

if the functions f(x) and g(x) are continuous on the segment a ˂  x˂ b, the integral curve passing 

through the point (ξ, η) is defined by equation 

𝑦 = 𝑒−𝐹(𝜂 + ∫ 𝑔(𝑥)𝑒𝐹𝑑𝑥
𝑥

𝜉
 ,         (10) 

where 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝜉
. 

For our case we obtain 

𝑓(𝑡) =  
1

𝑀(𝑡)

𝑑𝑀(𝑡)

𝑑𝑡
, 𝑔(𝑡) =  𝛼(𝑡) −  𝛽(𝑡)

𝐹(𝑡)

𝑀(𝑡)
           (11) 

For the initial value of time t = 0, entropy is zero, since the stand as an ecosystem does 

not yet exist, i.e. σ = 0. Under these initial conditions, the solution of equation (11) is as 

follows 

𝜎(𝑡) =
1

𝑀(𝑡)
∫ [𝛼(𝑡)𝑀(𝑡) −  𝛽(𝑡)𝐹(𝑡)]𝑑𝑡

𝑡

0
       (12) 

Then we apply formalised modelling to determine the explicit form of the functions α(t) 

and β(t), and then, according to the principles of system analysis, we conduct a computational 

experiment [14]. 

3 Results and discussion 

The choice of the explicit form of dependencies α(t) and β(t) will be made using the behaviour 

of the functions at the beginning of the stand life cycle, i.e. when the stand reaches the age 

of physiological maturity, and when approaching the time corresponding to the beginning of 
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the stationary regime, which we denoted as tmax. The age of physiological maturity is an 

important constant in silvicultural practice and was used in our modelling of stand growth 

dynamics [2]. From a mathematical point of view, at this time point the biomass of the stand 

as a function of time passes the inflection point tper, where the second derivative of the 

function M(t) is zero. 

We assume that entropy production reaches its maximum value at the age of physiological 

maturity. Based on this assumption, we choose the following dependence for the function 

α(t): 

𝛼(𝑡) = 𝐴𝑒𝑥𝑝(−
( 𝑡−𝑡𝑚𝑎𝑥)2

2d2 )         (13) 

In accordance with Prigozhin's principle, as it follows from works [11, 12], the function 

α(t) at t = tmax reaches the minimum positive value. And at this time point, the value of 

entropy is known from the calculations of works [11, 12]. While the value of the function 

β(t) is also known at this point from the same works. This information allows us to determine 

the constant A out of the known value of entropy at the point tmax. The parameter d of the 

model is determined during the computational experiment for large values of time, when the 

entropy should increase after reaching the minimum positive value. 

The choice of an explicit expression for the function β(t) is also based on the calculation 

results of [11, 12]. In these works, the function β(t) is considered to be a constant value. From 

the point of view of the occurring during stand growth physics processes, this function is 

responsible for high-quality energy flows into the system and low-quality energy flows out 

of the ecosystem. The definition of the magnitude of these fluxes and their time dependence 

can be found in [15]. It is known that they are largely determined by the albedo of the stands 

reflecting surface. At the growth beginning, the function β(t) increases reaching its maximum 

value at t = tmax, and then it slowly decreases tending to zero at t→∞. Based on these 

considerations, we choose the following dependence for the computational experiment 

𝛽(𝑡) =
𝑄

1+(𝑡−𝑡𝑚𝑎𝑥)2       (14) 

where the model parameter Q is found from the calculations of [11, 12]. 

The stand surface area and biomass are related by the relationship 

𝐹(𝑡) = 𝑔𝑀𝑞             (15) 

where g and q are parameters of the ecological-physiological model (EPM) [1]. 

To conduct the computational experiment, a program was created in the RTC Mathcad 

Prime 4.0 environment, and it can be implemented in earlier versions of Mathcad as well. 

The results of this computational experiment are shown in Figures 1 and 2, as well as in 

the table 1. 

The analysis of the results of the computational experiment gives next. The curve of the 

entropy production density dependence reproduces both the maximum value dσ/dt, and the 

minimum value of the entropy production density (Fig. 1). And in the vicinity of the 

inflection point tinf, the maximum is pronounced, that indicates a good agreement between 

the model and our initial assumption. Modelling with an increased parameter d leads to both 

a smoothing of the maximum and a shift towards longer times. Therefore, we give the value 

of the kink parameter d = 10 as the optimal value for the model. 
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Fig. 1. Results of calculating entropy production density as a function of time for a pine (Pínus 

sylvestris) stand of the 1-grade forest site capacity. 

 

Fig. 2. Results of entropy density calculation as a function of time for a pine (Pínus sylvestris) stand of 

the 1-grade forest site capacity. 

Table 1. Results of entropy density and entropy production density as a function of time for a pine 

(Pínus sylvestris) stand of the 1-grade forest site capacity. 

Time t, years Entropy density σ, kJ/(K·g) 
Entropy production density 

dσ/dt, J/(K·g·year) 

10 0.0000800851 0. 0390701 

20 0.0026073192 1.0390016 

30 0.0248712329 6.1136828 

40 0.0952092101 13.5407914 

50 0.1752699286 12.2144369 

60 0.1994966135 6.1628916 

70 0.1877383737 3.7209608 

80 0.1734974704 3.2602630 

90 0.1632711536 3.0966491 

100 0.1560667186 2.9843590 

110 0.1508749796 2.9007232 

120 0.1470668003 2.8368385 

130 0.1442368074 2.7861092 

140 0.1421074139 2.7413160 

150 0.1404589701 2.6822063 

160 0.1388568000 2.2908198 
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170 0.1286793876 2.0936197 

180 0.1276614370 2.4357906 

190 0.1271652468 2.4558381 

200 0.1268492517 2.4573416 

210 0.1266497182 2.4560198 

220 0.1265344253 2.4545146 

230 0.1264818739 2.4534144 

240 0.1264762933 2.4528165 

250 0.1265056644 2.4526803 

260 0.1265606676 2.4529286 

270 0.1266340194 2.4534807 

280 0.1267200125 2.4542631 

290 0.1268141783 2.4552130 

300 0.126913031 2.456278 

 

The minimum value of dσ/dt is observed at time t = 240 years. Certainly it is larger than 

that obtained in the works [11, 12]. However, as it was emphasized in [1], the stationary 

regime is a process and its beginning marks the initial value of the minimum of entropy 

production. With increasing time, the value of the function dσ/dt differs little from the 

minimum value (see table 1), that is observed in the model experiment. 

In the vicinity of the point t = tmax, we observe a violation of the monotonic character of 

the function dσ/dt. In our opinion, it is due to the suspicion of a special point of the function 

at that point in time. When shifting the point t = tmax by 5 years, this dip practically disappears, 

as it is shown in the graph (Fig. 1). 

The dependence of entropy on time is in general adequate to our assumptions (Fig. 2), 

although at the "special" point t = tmax, a kink in the curve is observed. The maximum value 

of entropy density relative to the point t = tinf is observed with a shift of 20 years compared 

to the maximum of entropy production density, i.e. entropy grows, but its growth rate slows 

down. 

In general, the dependence of entropy on time is adequate to our assumptions (Fig. 2), 

although a kink in the curve is observed at the "special" point t = tmax. The maximum value 

of entropy density is observed with a shift of 20 years relative to the point t = tinf compared 

to the maximum of entropy production density. I.e. entropy grows, but its growth rate slows 

down. 

4 Conclusion 

1. The connection between the maximum entropy production principle (MEPP) and 

Prigozhin's minimum entropy production principle is well proven in a computational 

experiment using the developed formalised model. Both maximum and minimum 

values of entropy production density are obtained for different time periods of 

ecosystem evolution within one approach. 

2. Our approach is based on the principles of ecological-physiological model (EPM) 

construction [1] taking into account the improvement and modification proposed in 

[11,12], where silvicultural constants had applied. 

3. Determination of parameters for the dependence of functions α(t) and β(t) with 

application of physically justified values of entropy density and entropy production 

density allowed to obtain quite justified their values within one approach for a pine 

(Pínus sylvestris) stand of the 1-grade forest site capacity. 

4. The method proposed in this paper can be applied to stands of other species and growing 

conditions, for which it is known the dynamics of biomass change. 
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