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Abstract. Bioactive agents are compounds that have an influence on 

human beings, organs, or tissues. These agents, which might be found in 

both natural and synthetic chemicals, are able to interact with biological 

systems and produce a variety of therapeutic or biological responses. In this 

regard, this work proposes a stacking method for categorizing five important 

bioactive agents: antibacterial, anti-HIV, antioxidant, antiparasitic, and 

antiprotozoal. This study has been designed with a graph-based feature 

extraction approach that successfully captures intricate interactions between 

molecular structures of bioactive substances. These extracted characteristics 

were then put into a stacking strategy, which is a strong ensemble learning 

technique that leverages the capabilities of several machine learning models 

to improve classification accuracy. By utilizing this innovative technique, 

the model outperformed state-of-the-art methods across all assessment 

criteria with more than 85% in terms of accuracy. The findings demonstrate 

the efficacy of the graph-based technique in conjunction with the stacking 

model, making it a useful tool for detecting important bioactive chemicals 

such as antibacterial, anti-HIV, antioxidant, antiparasitic, and antiprotozoal 

compounds for drug development, hence facilitating the development of 

novel therapeutic agents for essential health applications. 

   1 Introduction 

The raising resistance of pathogenic microbes to traditional chemical medications requires 

the development of revolutionary treatment techniques for infectious disorders [1, 2]. 

Antimicrobial peptides (AMPs) are the first series of defense against many infections. These 

peptides have a wide range of functions, including antibacterial (ABPs), anti-HIV (AHPs), 

antioxidant (AOPs), antiparasitic (APPs), and antiprotozoal (APZPs) properties, making 

them important in preventing infections and improving outcomes of treatment [3]. In general, 

these functionalities are small-molecule polypeptides that perform a variety of tasks against 

target species. These peptides serve an important role in innate immunity and are effective 

against a variety of pathogens, including bacteria, viruses, fungi, and parasites [4]. According 
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to the study, ABPs are reduced and entirely wipe out bacteria, making them crucial in the 

treatment of bacterial illnesses. They work by inhibiting critical bacterial activities such cell 

wall formation, protein production, and DNA replication [5-7]. AHPs were developed to 

prevent the reproduction and spread of the Human Immunodeficiency Virus (HIV). Anti-

HIV medicines, such as reverse transcriptase and protease inhibitors, disrupt critical steps of 

the viral life cycle [8-10]. AOPs neutralize free radicals, which are unstable chemicals that 

may harm cells and lead to aging, cancer, and cardiovascular disease. These chemicals defend 

the organism from oxidative stress by stabilizing free radicals and reducing cellular damage 

[11-13]. APPs, these medications are used to treat parasitic infections, which can include 

protozoa, helminths, and ectoparasites. Antiparasitic medications kill parasites directly or 

prevent them from surviving and reproducing within the host [14-16]. These are a group of 

medication to combat parasite that target protozoan illnesses like malaria, leishmaniasis, and 

giardia. Traditional antiprotozoal medicines frequently target essential processes in protozoa, 

such as DNA synthesis or protein creation, however there is growing interest in natural 

chemicals and AMPs as potential strategies for eliminating protozoan infections [17-20]. 

Traditional procedures endeavor to determine the most optimum solutions; however, these 

methods are generally time-consuming and labor-intensive. As a result, there is a rising 

emphasis on artificial intelligence systems to detect functionality more effectively. 

Researchers could leverage AI to accelerate the identification process, saving time and 

money on medication development and functional analysis.  

In this work, a sophisticated algorithm has been developed to detect five particular bioactive 

molecules using existing AMP databases [3]. Recent study has highlighted the significance 

of a generalized model, which provides a more efficient way for biologists and bioinformatics 

applications. Rather of using distinct classifiers for each bioactive agent, a unified predictor 

is ideal and attainable for detecting antibacterial, anti-HIV, antioxidant, antiparasitic, and 

antiprotozoal chemicals. This integrated strategy improves the detection method via reducing 

computational complexity and increasing the accuracy of bioactive agent prediction. As a 

result, the suggested approach offers considerable advantages in terms of enhancing drug 

development and bioinformatic research.  

2 Related works 

 

In the modern era, advancements across all fields have led to an increased emphasis on 

modernization, including within the realm of bioinformatics. Experts in this discipline are 

currently focusing on computational techniques for addressing complexities. As a result, 

plenty of time has been spent determining the most optimum solutions using striking 

algorithmic and data-driven techniques. These computational approaches have proven 

significant in overcoming hurdles in biological research, helping to facilitate higher quality 

analysis and fast resolution of issues. Jukič et al., used the most recent machine learning 

algorithms to uncover new antibacterial agents and targets, including small compounds and 

antibacterial peptides [21]. Ivanenkov et al., demonstrated Support Vector Machine (SVM)-

based technique for identifying ABPs with an accuracy of 75.5% [22]. However, there is still 

plenty of space for enhancement of functionality.  Fjell et al, recommended another approach 

to detection of ABPs based on machine learning methods and obtained a better accuracy [23]. 

Yang et al. proposed quantitative structure activity relationship (QSAR) and SVM machine 

learning method to improve the accuracy [24]. Lata et al. designed SVM and Artificial Neural 
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Network (ANN) based model to detect the ABPs [25].  Rosa et al. developed anti-HIV 

therapies through machine learning [26].  Foglierini et al., proposed another machine learning 

method for HIV-1 bNAbs detection [27]. Ge et al. predicted antiviral peptide, which are 

correlated to HIV [28]. Hesamzadeh et al., fully explained the AOPs based on artificial 

intelligence methods [29]. Zhang et al. proposed bioactive agent identification based on 

machine learning [30]. Chen et al. developed Deep2Pep model based on deep learning 

approaches with 73.7% accuracy overall [31]. In another article, Zhang et al., proposed 

Matthew’s correlation coefficient (MCC) metrics outcome with Esm4ao model for AOPs 

detection [32].  Periwal et al. designed a model for APPs detection, where the authors used 

Extremely Gradient Boosting (XGBoost) method [33]. Furthermore, machine learning 

algorithms for predicting the functionality of AMPs have been intensively studied, revealing 

their potential to improve accuracy and efficiency identification [3, 34-36].  

However, this work presents another technique that helps advance the field in various ways:   

a) The goal of this research is to identify five bioactive compounds to develop a strong 

classifier that could be used as a generalist framework. This single classifier can 

detect all five classifications, resulting in considerable time and cost savings.   

b) This technique follows Chou's five-step requirements, incorporating multiple 

machine learning algorithms into our architecture before emerging on an effective 

choice known as the Anti-BioEn concept.   

c) To improve categorization, we use a graph-based feature extraction strategy. 

As a result, this technique could contribute to finding effective medicinal products while also 

aiding in larger advances in bioinformatics, pharmacology, and personalized medicine. 

Finally, this method demonstrates potential for developing innovations that will have a major 

influence on future public health outcomes. 

3 Materials & Methods 

3.1 Benchmark Dataset 

The research study gathered the data through iAMPCN article [3]. The authors claimed that 

they  

organised the samples from APD3, dbAMP, DRAMP, AnOxPePred, HAPPENN and so many 

repositories [37-41, 3]. The dataset used in this study includes a variety of bioactive peptides, 

each with a distinctive sample size. ABPs comprise 1,000 positive and 1,000 negative 

samples. AHPs are composed of 812 positive and 812 negative samples. 180 positive and 

180 negative samples reflect AOPs. APPs have 457 positive samples and 457 negative 

samples, which are evenly divided into positive and negative data. In the end, APZPs are 

represented by 53 positive and 53 negative samples. However, we set the datasets as 20% for 

test size and 80% for train phase of each. 

3.2 Methodological Overview 

The study aims to determine the most successful model for identifying bioactive substances. 

Figure 1 illustrates every step of the methods, which begins with dataset obtaining. Following 

that, a feature extraction procedure was executed using a graph-based feature extraction 
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approach. The collected properties were incorporated into machine learning algorithms that 

classified the biochemical agents. Six machine learning models were implemented; therefore, 

an ensemble approach was constructed from these six baseline models, which produced Anti-

BioEn, a stacking-based strategy. Numerous evaluation requirements were applied, and it 

was discovered that Anti-BioEn was the most advantageous approach to determine every 

biologic agent. 

 
Fig 1. Methodology of the study, where first step collects the dataset, then feature extractions, model 

apply and finding the optimal model based on evaluation metrics. 

3.3 Feature Extraction Procedure 

This study used graph-based feature extraction to describe the interactions between bioactive 

compounds. GraphCodeBERT was used for feature extraction because of its ability to capture 

structural relationships as well as semantic content from graph representations [42, 43]. This 

technique allowed a deeper knowledge of bioagent interactions, allowing for more accurate 

categorization across many categories. The components bioactive agents: ABPs, AHPs, 

AOPs, APPs, and APZPs can be seen as vertices in a graph, while their interactions or 

dependencies are shown as edges. Each node receives an embedding that represents both its 

semantic and graphological properties. This delivers an extensive, multidimensional 

depiction of the bioactive chemicals or additional substances in analysis. Figure 2. represent 

the overall procedure of the feature extraction. 
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Fig 2. Graph-based Feature extraction procedure of every bioactive agent. 

3.4 Proposed Approach Construction 

Initially, six baseline models were used: Logistic Regression (LR), AdaBoost (ADA), 

Extreme Gradient Boosting (XGB), Multi-Layer Perceptron (MLP), Extra Trees (ET), and 

Random Forest [43-48]. These models were combined into a mounting technique [49], with 

ADA, XGB, MLP, ET, and RF serving as base learners and LR as the finalized predictor in 

the layering algorithm called Anti-BioEn. The accumulative approach incorporates results 

from fundamental models to increase overall predictive performance. The mathematical 

expression for the final forecast is as follows: 

{
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𝐴𝑛𝑡𝑖 − 𝐵𝑖𝑜𝐸𝑛 = {𝜑(𝑥) + 𝜎(𝑧)}

                                                                                   

(1) 

Where, 𝑎𝑡(𝑥) is ADA, 𝑓(𝑥) is the prediction is a weighted sum of the ADA, 𝑔(𝑥) means the 

XGB, 𝑦(𝑥) is the MLP,  𝑒(𝑥)  is the ET and L is the LR 𝜑(𝑥) means the overall probabilistic 

values of all base line models.  𝜎(𝑧) is the overall logistic function. 

The Anti-BioEn approach has various benefits that allow being implemented. To begin, this 

layering tactic integrates various models, using their distinct strengths while correcting for 

their flaws, resulting in more accurate overall forecasts than any single model. The selected 

baseline models use a variety of approaches, ranging from linear regression to ensemble 

methods, which improves the model's capacity to generalize to new data. Furthermore, by 

merging numerous models, the Anti-BioEn model decreases the danger of overfitting by 

averaging out the predictions, resulting in stronger performance on test data 
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Fig 3. Overall procedure of the Anti-BioEn model based on hybrid models 

4 Results 

Several assessment measures were used for each bioactive molecule, including accuracy 

(Acc), sensitivity (Sn), specificity (Sp), precision (Pr), F1 score (F1), Kappa score (Kp), and 

Matthews Correlation Coefficient (MCC). These measures were found effective in solving 

the categorization challenge. Table 1 presents the study's overall results. 

Table 1. Performance measurements of Anti-BioEn model with others applied model for 5 

bioagents detection. 

Bioactive 

agents 

Model  Acc Sn Sp Pr F1 Kp MCC 

ABPs  

LR 

0.6868 0.5552 0.6590 0.5591 0.5774 0.4523 0.4531 

AHPs 0.6060 0.4557 0.6280 0.6185 0.50 0.5724 0.5718 

APPs 0.5885 0.6555 0.6244 0.6096 0.6571 0.7390 0.7391 

AOPs 0.5512 0.6096 0.6571 0.6890 0.4541 0.7300 0.7330 

APZPs 0.6525 0.6096 0.6571 0.7291 0.7219 0.6250 0.6299 

ABPs  

ADA 

0.5268 0.6052 0.6673 0.6096 0.6571 0.7390 0.4400 

AHPs 0.5564 0.5558 0.6460 0.5885 0.6555 0.6244 0.50 

APPs 0.4593 0.7750 0.7444 0.5512 0.6096 0.6571 0.7010 

AOPs 0.7151 0.8120 0.8133 0.8236 0.7046 0.6010 0.6530 

APZPs 0.7022 0.8571 0.6577 0.8091 0.8010 0.6250 0.5214 

ABPs  

MLP 

0.7268 0.7052 0.7573 0.7291 0.7070 0.4523 0.4531 

AHPs 0.6460 0.5885 0.6555 0.6244 0.6460 0.6525 0.6096 

APPs 0.7444 0.5512 0.6096 0.6571 0.7444 0.7390 0.6391 

AOPs 0.7750 0.7444 0.5512 0.7750 0.6141 0.60 0.5612 

APZPs 0.7912 0.8161 0.6574 0.7501 0.6510 0.7555 0.6100 

ABPs  

RF 

0.7168 0.6051 0.5573 0.6571 0.5512 0.4523 0.4531 

AHPs 0.7167 0.6559 0.6266 0.6010 0.6530 0.5724 0.5512 

APPs 0.6495 0.6755 0.5644 0.6250 0.6299 0.4644 0.4644 

AOPs 0.7550 0.7012 0.7335 0.7171 0.7142 0.7120 0.6330 

APZPs 0.7171 0.7171 0.6776 0.7201 0.7010 0.6151 0.6101 

ABPs  

ET 

0.6010 0.6530 0.5724 0.7291 0.7070 0.4523 0.4531 

AHPs 0.6250 0.6299 0.7046 0.6010 0.6530 0.5724 0.5718 
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APPs 0.7046 0.6010 0.8010 0.6250 0.6299 0.7390 0.6391 

AOPs 0.8010 0.6250 0.6500 0.6590 0.6641 0.6408 0.6031 

APZPs 0.7100 0.5123 0.5535 0.6095 0.6011 0.6150 0.5881 

ABPs 

XGB 

0.7161 0.6852 0.7171 0.7158 0.6970 0.3121 0.4031 

AHPs 0.7261 0.7158 0.7161 0.7050 0.6535 0.4222 0.5112 

APPs 0.8064 0.7050 0.8045 0.80 0.7158 0.5393 0.6493 

AOPs 0.8100 0.80 0.8036 0.8170 0.7050 0.6404 0.6834 

APZPs 0.7913 0.8170 0.7171 0.7905 0.7911 0.5555 0.5895 

ABPs 

Anti-

BioEn 

0.7268 0.7052 0.7573 0.7291 0.7070 0.4523 0.4531 

AHPs 0.7867 0.7558 0.8260 0.8285 0.7435 0.5724 0.5718 

APPs 0.8695 0.8750 0.8644 0.8596 0.8672 0.7390 0.7391 

AOPs 0.8750 0.90 0.8333 0.8590 0.7142 0.7300 0.7330 

APZPs 0.8125 0.8571 0.7777 0.8091 0.8010 0.6250 0.6299 

The Anti-BioEn model was tested on a variety of bioactive chemicals, giving noteworthy 

results in terms of numerous classification criteria. The model's accuracy forABPs was 

72.68%, with a sensitivity of 70.52% and a specificity of 75.73%. In the instance of AHPs, 

the model performed better, with an accuracy of 78.67%, sensitivity of 75.58%, and 

specificity of 82.60%. The accuracy increased further for APPs, where the model achieved 

an excellent 86.95% accuracy, with sensitivity and specificity values of 87.50% and 86.44%, 

respectively. The model achieved 87.50% accuracy for AOPs, as well as 90% sensitivity and 

83.33% specificity. Finally, the performance of APZPs was excellent, with 81.25% accuracy, 

85.71% sensitivity, and 77.77% specificity. These findings show that the Anti-BioEn model 

is an efficient approach for classifying bioactive substances, with strong performance across 

various kinds of peptides. The model's ability to continuously attain excellent accuracy and 

sensitivity across a wide range of bioactive substances highlights its promise as a dependable 

tool in bioinformatics research. As shown in Figure 4, Anti-BioEn achieved superior 

performance compared to the other methods, which is demonstrated more clearly in the 

results. 

Fig 4. Demonstrates all the performance results and comparison with Anti-BioEn 

    5 Conclusion 

This study effectively proposed a specific structure for the categorization of bioactive 

compounds based on the Anti-BioEn model, which uses a layering strategy to improve 

prediction performance. The use of a graph-based feature extraction technique has proven 

useful in capturing the complex molecular interactions seen in bioactive compounds. The 

Anti-BioEn model has greatly outperformed standard classification approaches by using a 
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stacking strategy to combine the strengths of numerous machine learning algorithms 

achieved an accuracy of 72.68% for antibacterial peptides (ABPs), 78.67% for anti-HIV 

peptides (AHPs), 86.95% for antioxidant peptides (APPs), 87.50% for antiparasitic peptides 

(AOPs), and 81.25% for antiprotozoal peptides (APZPs). Overall, the findings underscore 

the Anti-BioEn model's potential as a powerful tool for discovering essential bioactive 

molecules, enabling drug development and leading to the discovery of new therapeutic agents 

for crucial medical needs. Future research should focus on expanding the dataset to include 

a broader range of bioactive agents, which would enhance the model's robustness and 

applicability. Additionally, exploring alternative feature extraction methods and machine 

learning algorithms may provide insights into improving classification accuracy and 

efficiency. 
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