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Abstract: To achieve automatic photo capture of fundus images in an ultra-wide-angle laser-focused fundus 
scanning system, a pupil detection and positioning algorithm based on confocal laser technology was 
proposed and deployed. First, image preprocessing methods such as automatic laser intensity enhancement 
and contrast adjustment were applied to reduce the impact of noise and interference on subsequent processing. 
Next, the pupil was quickly and accurately located using the proposed pupil detection and positioning 
algorithm based on confocal laser technology. Finally, the movement information was calculated based on the 
position of the pupil center and image center, and the three-axis stepper motor was controlled in a rapid closed-
loop manner to achieve three-dimensional automatic tracking of the pupil. Once the shooting conditions were 
met, the photo was automatically captured. To validate the effectiveness and timeliness of this solution, 
automatic photo capture tests were conducted on different subjects using a prototype. The success rate of 
automatic photo capture was 95.6%, with an average time of about 8 seconds per single-eye capture. The 
fundus images captured by successful automatic photos all met the requirements for automatic capture. 

1 Introduction 

The fundus is the inner membrane of the eyeball, referring 
to the inner and posterior tissues of the eyeball, which 
mainly include the retina, macula, optic disc, and central 
retinal vein. It is the only part of the human body where 
blood vessels can be observed with the naked eye under 
non-invasive conditions [1]. Fundus imaging is a medical 
imaging technique used to assess the structure and 
pathological changes of the fundus, providing valuable 
insights into the health of the eyes and even the whole 
body, as many diseases leave traces in the fundus. For 
example, the cup-to-disc ratio from fundus images can 
suggest whether glaucoma screening should be conducted. 
Microvascular changes, hemorrhages, and exudates are 
common ocular complications in diabetic patients [2]. 

There are generally two types of fundus imaging 
techniques: (1) traditional optical-based fundus imaging, 
where white light is used as the light source to illuminate 
the retina and obtain static fundus images, which results 
in low patient comfort and poor image clarity and limited 
imaging range; (2) confocal laser-based fundus imaging, 
which uses a weak laser to scan the retina point by point, 
collecting light from the confocal plane to acquire images. 
This method offers better patient comfort and produces 
high-quality, dynamic images with a wide field of view [3-
4]. In practical applications, fundus image capturing can 
be either manual or automatic. The manual method 
requires high cooperation from the patient and skilled 
medical personnel, while the automatic method involves 

detecting the pupil's position, calculating the offset, and 
controlling the motor to quickly align the pupil, offering 
advantages such as faster speed, simpler operation, and 
stable image quality. 

Pupil detection is key to automation, and the accuracy 
of detection directly affects the precision of automation. 
Current pupil detection methods can be categorized into 
two main types: learning-based methods and non-
learning-based methods. Learning-based methods [5-6] 
use supervised machine learning to precisely locate the 
pupil, offering high accuracy but at a high cost, requiring 
large amounts of labeled data and time, and being difficult 
to implement. Non-learning-based methods [7-8], such as 
Hough transform for circle detection, morphological 
detection, and ellipse fitting, rely on high-quality images 
to achieve high precision. However, these methods are 
simpler, cost-effective, and robust to noise. 

To address the cost, speed, robustness, and accuracy 
requirements for automatic fundus photography in an 
ultra-wide angle laser confocal fundus scanning system, 
this paper proposes a pupil detection algorithm based on 
confocal laser technology and applies it to achieve 
automatic fundus photography in such systems. The 
system completes the task using a monocular camera, 
rapidly and accurately locating the pupil, calculating the 
offset, and controlling a three-axis motor to drive the 
optical system for automatic alignment and movement to 
the working distance, until the pupil region fills the entire 
image, triggering automatic photography. The research 
and engineering implementation of the automatic 
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photography algorithm allow the system to be applied not 
only in specific examinations but also for rapid screening 
in health checkup centers or remote areas, reducing human 
factors during image capture, simplifying the process, and 
improving efficiency. 

2 System Components 

The system mainly consists of the eye frame, optical 
system, and three-axis stepper motor. The eye frame is 
used to support the subject’s eyes, thereby minimizing the 
impact of head movement. Compared with the commonly 
used head frame in similar products, the eye frame better 
stabilizes the position of both eyes, greatly simplifying the 
subsequent automatic photography process. The optical 
system is used to capture fundus images. The acquired 
images are processed to obtain movement information, 
which is then used to control the movement of the three-
axis motor. This drives the optical system to align the pupil, 
forming a closed loop, and finally captures the fundus 
image. 

3 Algorithm Research and Engineering 
Implementation 

3.1 Precise Pupil Location 

The system extracts a single-frame image collected by the 
fundus camera and analyzes it using an automatic pupil 
alignment algorithm. First, the region containing valid 
information needs to be extracted. The original image 
captured by the system is a grayscale image of 2048×2076 
pixels, but the actual valid information is confined to a 
circular region displayed on the interface. The ultimate 
goal of the automatic pupil alignment is to move the pupil 
region into this valid information area and fill it 
completely. The mask operation not only preserves the 
information within the valid region but also sets the pixel 
values outside the region to zero, thus eliminating some 
interference factors (such as the consending lens 
reflections at the corners of the image). 

Next, the image contrast needs to be enhanced. When 
the subject has vitreous opacities or when the laser 
intensity is too low, the laser intensity entering the eye is 
insufficient, resulting in a dark image where the pupil 
region and the background are difficult to distinguish. To 
address this, histogram equalization is applied to enhance 
the contrast of the image, which helps average the 
distribution of pixel intensity values. This enhancement is 
beneficial for subsequent processing, and the specific 
steps are as follows: 

Algorithm: Histogram Equalization 
Input: image (grayscale image) 
Output: enhanced_image (enhanced grayscale 
image) 1. Compute the histogram of the input 
image: 

- Create an array hist[] with 256 bins (for pixel 
values from 0 to 255). 

- For each pixel in the image: 

- Increment the corresponding bin in hist[] 
based on the pixel value. 

2. Compute the cumulative distribution function 
(CDF): 

- Initialize CDF[] as an array of size 256. 
- Set CDF[0] = hist[0] (first bin). 
- For i = 1 to 255: 

-CDF[i] = CDF[i - 1] + hist[i] (cumulative 
sum of histogram values). 

3. Normalize the CDF: 
- Find the total number of pixels N = width * 

height in the image. 
-For i = 0 to 255: 

-CDF_normalized[i] = round((CDF[i] - 
CDF[0]) / (N - CDF[0]) * 255) 

4. Map the original pixel values to the equalized 
values: 

  -For each pixel in the image: 
-Let original_pixel_value = image[x, y] 
-Set enhanced_image[x, y]= 
CDF_normalized[original_pixel_value] 

5. Return the enhanced image. 
 
 
Next, the enhanced image is binarized, and all 

connected components are identified. Since the pupil 
region in the enhanced image has a higher grayscale value, 
a threshold value Gv is selected, and each pixel is 
compared to this threshold to obtain the binarized image. 
All connected components in the binarized image are then 
identified. The binarization process is described by 
equation (1), where G denotes the grayscale value of the 
point (i, j) in the image: 

𝐺𝐺𝑖𝑖𝑖𝑖 = �0      𝐺𝐺𝑖𝑖𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺
255 𝐺𝐺𝐺𝐺𝐺𝐺 > 𝐺𝐺𝐺𝐺 (1) 

Finally, based on the anatomical characteristics of the 
pupil, the pupil region is selected from the numerous 
connected components. Unlike other interfering regions 
which may exhibit irregular shapes due to environmental 
noise, the pupil area is approximated as a circle based on 
its distinct anatomical characteristics. Let a and b be the 
length and width of the bounding rectangle of a connected 
component, respectively. When the following two 
conditions are satisfied, the connected component is 
considered to meet the shape requirements of the pupil 
region: 

1.a/b≈1 
2.ab≈(bπ2) 
Since the pupil area in the fundus image is 

approximately circular but not perfect circle, these 
conditions are approximated to increase tolerance. These 
two conditions help eliminate connected components that 
differ significantly from the pupil shape. The remaining 
connected components that satisfy these two shape 
conditions undergo the next area constraint. When the 
fundus camera is farther from the pupil, the pupil area is 
smaller and more likely to be interfered with by small 
circular light spots. However, when the camera is closer to 
the pupil, this interference is less likely, as the pupil area 
occupies most of the fundus image. Let S be the area of 
the connected component, and Smin be the minimum real 
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pupil area at a distance. When the following condition is 
met, the connected component is considered to meet the 
area requirements for the pupil region: 

3. S≥Smin  
Condition (3) helps eliminate interference from small 

circular light spots at longer distances. The remaining 
connected components that satisfy the area condition are 
then subject to the next grayscale value constraint. After 
applying the three aforementioned constraints, the 
connected component with the highest average grayscale 
value is considered the pupil region. Let G be the largest 
average grayscale value among the remaining connected 
components, which is preliminarily considered the 
average grayscale value of the pupil region, and G1 and 
G2 be the lower and upper bounds for the average 
grayscale value, respectively. When the following 
condition is met, the connected component is identified as 
the pupil region:  

4. G1≤G≤G2 
If the largest average grayscale value G is still lower 

than the lower bound G1, it is determined that the pupil is 
absent in this frame. If G exceeds the upper bound G2, it 
indicates overexposure, and normal pupil detection cannot 
be performed. Therefore, only the connected components 
that meet the average grayscale value criteria are finally 
identified as the pupil region, and subsequent operations 
are performed. Figure 1 shows the processes in this 
section, including image preprocessing and pupil 
detection. 

  
 

  
Figure 1. Pupil Detection Process 

3.2 Pupil Alignment 

After determining the pupil position, the pupil 
displacement information and pupil filling ratio are 
calculated, and the three-axis stepper motors are 
controlled to drive the optical system for automatic pupil 
alignment. The center coordinates of the image acquisition 
area are (Xcenter, Zcenter) = (1024, 1088), and the center 
coordinates of the pupil region are (Xpupil, Zpupil). The 

radius of the circular image region extracted by the mask 
is R. The displacement ratios in the X and Z axes and the 
pupil filling ratio are calculated using equations (2), (3), 
and (4). 

  𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

𝑅𝑅
(2) 

  𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
�𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

𝑅𝑅
(3) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜋𝜋𝑅𝑅2

 (4) 

Xdelay and Zdelay represent the displacement ratios 
of the pupil region center relative to the image acquisition 
area center along the X and Z axes. When both are equal 
to 0, it indicates that the pupil region center completely 
overlaps with the image acquisition area center. A 
displacement threshold of 5% is set in this paper, meaning 
that if the displacement ratio is less than 5%, no movement 
is required in that direction. If it is greater than 5%, the 
movement direction (positive or negative) is determined 
based on the pupil center's position relative to the image 
acquisition area center. The Fill ratio represents the ratio 
of the pupil region area to the circular image region area. 
A value of 1 means that the pupil region completely fills 
the circular image region. A filling ratio threshold of 98% 
is set in this paper, meaning that if the pupil filling ratio 
exceeds 98%, the optical system has reached the working 
distance (Y-axis), pupil alignment is complete, and the 
next step can be performed. 

The movement of the optical system is driven by three-
axis stepper motors, all of which are stepper motors. A 
stepper motor converts electrical pulse signals into 
corresponding angular or linear displacements. For each 
pulse input, the motor rotates by an angle ω. Therefore, 
the motor requires 360/ω pulses to complete one full 
rotation. The lead distance L of the motor refers to the 
length of the motor shaft's rotation per turn, i.e., the linear 
displacement produced by one full rotation. Hence, the 
linear displacement per pulse is l=L⋅ω/360 

The motor operates in two modes: speed mode and 
position mode. In speed mode, the motor continues 
rotating at a set speed until a new speed command is 
received. In position mode, the motor accelerates, then 
moves at a constant speed, and finally decelerates to 
accurately stop at the set position. Since pupil alignment 
requires alignment along all three axes, and during Y-axis 
movement, the actual distance represented by each pixel 
in the image acquisition area decreases, resulting in 
varying ratios between image displacement and actual 
displacement, the stepper motors operate in speed mode. 

The closed-loop control of the three-axis stepper 
motors is key to pupil alignment. However, due to 
hardware limitations, there is a two-frame delay between 
the image sent to the algorithm and the actual captured 
image, which affects closed-loop control. Therefore, the 
pupil alignment process is divided into two stages: high-
speed stage and low-speed stage. In the high-speed stage, 
the stepper motors move at a higher speed, primarily 
driving the optical system to move most of the Y-axis 
travel and approach the working position, while also 
adjusting the XZ axes to bring the pupil region closer to 
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the circular image region area center. In the low-speed 
stage, the stepper motors move at a slower speed to 
minimize the impact of the frame of delay on closed-loop 
control and precise pupil alignment. The goal is to adjust 
the XZ axes so that the pupil region is located at the center 
of the circular image region area, while the Y-axis moves 
to the working position, ensuring the pupil region 
completely fills the circular image acquisition area, and 
the conditions for automatic photo capture are met. The 
operational process is shown in the figure 2 and the fundus 
image captured automatically is shown in the figure 3: 

 

 

Figure 2. Overall Process Flow of Automatic Photography. 

 

Figure 3. The fundus image captured automatically is shown in 
the figure. 

4 Experimental Result 
To verify the success rate, speed advantage, and 
repeatability of automatic photo capture based on the 
method presented in this paper, experiments were 
conducted on a total of 15 subjects, with each subject 
forming a group. For each subject, one manual photo 
capture was performed by a professional and three 
automatic photo captures were performed consecutively, 
ensuring that the pupil position remained constant during 
the process. The time spent for the capture, the XYZ 
positions of the motors at the end of the automatic capture, 
and whether the automatic capture was successful were 
also recorded. 

In the 45 automatic captures performed during the 
experiment, 43 were successful and 2 failed, resulting in 
an automatic photo capture success rate of 95.6%. Figure 
4 shows the average time spent on the three automatic 
photo captures for each group and the time spent on the 

manual photo capture. Let Xpo1 is the position of the X-
axis motor after the first automatic photo capture, Xpo2 
and Xpo3 are the positions after the second and third 
automatic captures, and Xpo is the position of the X-axis 
motor after the manual photo capture ， the average 
deviation of X motor in this experimental group is 
(Xpo1+Xpo2+Xpo3-3*Xpo)/3. Figure 5 shows the 
average deviation of the XYZ motors at the end of the 
three automatic photo captures compared to the manual 
photo capture for each group。From figure 4, it can be seen 
that the average time spent on automatic photo capture for 
each group is less than that of manual capture, indicating 
a clear speed advantage of the automatic photo capture 
based on the method in this paper. From figure 5, it can be 
observed that although the average deviation in motor 
positions at the end of the automatic and manual photo 
captures shows some fluctuations, the majority of 
deviations are smaller than 15000 and bigger than 3000, 
approximately 1 cm (approximately 1/50 of the three-axis 
length), indicating that the automatic photo capture based 
on this method has good repeatability. 

 

 

Figure 4. Automatic and Manual Photography Time 
Consumption Experiment. 

 

Figure 5. Automatic Photography Reproducibility Experiment. 

5 Conclusion 
This paper proposes a pupil detection algorithm based on 
confocal laser technology and applies this algorithm to 
achieve automatic photo capture of fundus images in an 
ultra-wide-angle laser-focusing fundus scanning system. 
The system completes the entire task using a monocular 
camera, quickly and accurately locates the pupil, 
calculates the offset information, and controls the three-
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axis stepper motor to automatically align the optical unit 
with the pupil and move it to the working distance until 
the pupil area fills the entire image, at which point the 
fundus image is automatically captured. Experiments 
demonstrate that the method proposed in this paper can 
achieve automatic photo capture quickly, accurately, and 
with high repeatability. The success rate is 95.56%, with 
the time spent on each automatic capture being 
approximately 8-10 seconds. Additionally, the 
repeatability of multiple captures is good, with an average 
error of only 7000. From the experimental results, it can 
be concluded that this system has high success rates, fast 
speed, and good repeatability across multiple operations. 
The retention of manual operation allows the system to 
perform more detailed checks, addressing a small number 
of special requirements. The implementation of the 
automatic photography function allows even operators 
with limited experience to quickly master the operation 
process, meeting the majority of needs. It simplifies the 
photography workflow and improves efficiency. This 
makes CSLO not only suitable for detailed examinations 
of specific diseases but also applicable to large-scale 
retinal screening in populations. Furthermore, it facilitates 
the promotion and use of CSLO in areas with limited 
medical resources. 

Certainly, there are several areas for future work to 
improve both accuracy and efficiency. For example, 
conducting more clinical validations of the algorithm in 

hospitals would enable it to accommodate a wider range 
of ophthalmic diseases. Additionally, exploring more 
effective three-axis motor control strategies could help 
reduce the impact of delay frames on speed. 
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