Open Access
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 01005
Number of page(s) 9
Section Biotechnology and Cell Structure Analysis
Published online 08 May 2023
  • Libby P., Buring J.E., Badimon L., et al. Atherosclerosis. Nature Reviews Disease Primers. 2019;5(1). doi: 10.1038/s41572-019-0106-z [Google Scholar]
  • Herrington W., Lacey B., Sherliker P., Armitage J., Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circulation Research. 2016;118(4):535–546. doi: 10.1161/circresaha.115.307611 [CrossRef] [PubMed] [Google Scholar]
  • Wolf D., Ley K. Immunity and Inflammation in atherosclerosis. Circulation research. 2019;124(2):315–327. doi: 10.1161/CIRCRESAHA.118.313591 [CrossRef] [PubMed] [Google Scholar]
  • Liu J. Progress in Inflammatory Pathogenesis of Atherosclerosis. Journal of Xi’an Jiaotong University (Medical Sciences). 2015;36(2):141–152. doi: 10.7652/jdyxb201502001 [Google Scholar]
  • World Health Organization. Cardiovascular Diseases (CVDs). Published June 11, 2021. Accessed July 27, 2022. [Google Scholar]
  • National Heart, Lung, and Blood Institute. Atherosclerosis - What Is Atherosclerosis? | NHLBI, NIH. Published March 24, 2022. Accessed July 26, 2022. [Google Scholar]
  • Gimbrone M.A., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research. 2016;118(4):620–636. doi: 10.1161/circresaha.115.306301 [CrossRef] [PubMed] [Google Scholar]
  • Li D., Li Y., Yang Q., et al. Research Progress of Endothelial Dysfunction and Atherosclerosis. Chinese Journal of Experimental Traditional Medical Formulae. 2012;18(8):272–276. doi: 10.13422/j.cnki.syfjx.2012.08.023 [Google Scholar]
  • Pedro-Botet J., Climent E., Benaiges D. Atherosclerosis and inflammation. New therapeutic approaches. Medicina Clínica (English Edition). 2020;155(6):256–262. doi: 10.1016/j.medcle.2020.04.020 [CrossRef] [Google Scholar]
  • Li B., Li W., Li X., Zhou H. Inflammation: A Novel Therapeutic Target/Direction in Atherosclerosis. Current Pharmaceutical Design. 2017;23(8):1216–1227. doi: 10.2174/1381612822666161230142931 [CrossRef] [Google Scholar]
  • Zhang Y., Zhang Y. Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice. Biomedicine & Pharmacotherapy. 2016;81:345–355. doi: 10.1016/j.biopha.2016.04.031 [CrossRef] [Google Scholar]
  • Mitchell J.P., Carmody R.J. NF-κB and the Transcriptional Control of Inflammation. International Review of Cell and Molecular Biology. 2018;335:41–84. doi: 10.1016/bs.ircmb.2017.07.007 [CrossRef] [Google Scholar]
  • Zhang F., Zheng G., Qi J., Gao Y. Research progress of inflammatory signaling pathway associated with atherosclerosis. Journal of Clinical Medicine in Practice. 2022;10(26):144–148. [Google Scholar]
  • Monaco C., Andreakos E., Kiriakidis S., et al. Canonical pathway of nuclear factor B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proceedings of the National Academy of Sciences. 2004;101(15):5634–5639. doi: 10.1073/pnas.0401060101 [Google Scholar]
  • Yan Y., Wang J., Yu L., et al. ANKRD36 Is Involved in Hypertension by Altering Expression of ENaC Genes. Circulation Research. 2021;129(11):1067–1081. doi: 10.1161/circresaha.121.319883 [CrossRef] [PubMed] [Google Scholar]
  • Zheng B., Yin W., Suzuki T., et al. Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis. Molecular Therapy. 2017;25(6):1279–1294. doi: 10.1016/j.ymthe.2017.03.031 [Google Scholar]
  • Geovanini G., Libby P. Atherosclerosis and inflammation: overview and updates. Clinical Science. 2018;132(12):1243–1252. doi: 10.1042/cs20180306 [CrossRef] [PubMed] [Google Scholar]
  • Lawrence T. The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harbor Perspectives in Biology. 2009;1(6):a001651–a001651. doi: 10.1101/cshperspect.a001651 [CrossRef] [Google Scholar]
  • Fang Y., Wang X., Li W., et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. International Journal of Molecular Medicine. 2018;42(4). doi: 10.3892/ijmm.2018.3783 [Google Scholar]
  • Guo R., Zhang L., Meng J. Retracted: Circular RNA ANKRD36 attends to lipopolysaccharide-aroused MRC-5 cell injury via regulating microRNA-31-3p. BioFactors. 2019;46(3):391–401. doi: 10.1002/biof.1592 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.