Open Access
Issue
BIO Web Conf.
Volume 84, 2024
International Scientific and Practical Conference “Development and Modern Problems of Aquaculture” (AQUACULTURE 2023)
Article Number 01047
Number of page(s) 6
Section Biological Systems Engineering
DOI https://doi.org/10.1051/bioconf/20248401047
Published online 05 January 2024
  • P. J. Hansen, Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology, 154, 190–202 (2020) http://doi.org/10.1016/j.theriogenology.2020.05.010 [CrossRef] [PubMed] [Google Scholar]
  • V.A. Kosov, I.P. Miroshnichenko, Adaptatsionnyye kachestva korov vostochnogo zonalnogo zavodskogo tipa krasnoy molochnoy porody, Innovatsii v zhivotnovodstve - Segodnya i zavtra. Sbornik nauchnykh statey po materialam Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 70-letiyu RUP «Nauchnoprakticheskiy tsentr Natsionalnoy akademii nauk Belarusi po zhivotnovodstvu», 438-439 (2019) [Google Scholar]
  • V.A. Kosov, Dlitelnost khozyaystvennogo ispolzovaniya i prizhiznennaya produktivnost korov ukrainskoy krasnoy molochnoy porody, Zootekhnicheskaya nauka Belarusi : sb. nauch. tr., RUP «Nauch.-prakt. tsentr NAN Belarusi po zhivotnovodstvU», Zhodino, 49(1), 110–116 (2014) [Google Scholar]
  • V.A. Kosov, I.P. Miroshnichenko, V.Y. Izdepskiy, Otsenka vosproizvoditelnykh kachestv korov ukrainskoy krasnoy molochnoy porody, Nauchnyy vestnik gosudarstvennogo obrazovatelnogo uchrezhdeniya Luganskoy Narodnoy Respubliki “Luganskiy natsionalnyy agrarnyy universitet”, 8-1, 512-518 (2020) [Google Scholar]
  • T. T. Nguyen, P. J. Bowman, M. Haile-Mariam, J. E. Pryce, B. J. Hayes, Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci., 99, 2849–2862 (2016) https://doi.org/10.3168/jds.2015-9685 [CrossRef] [Google Scholar]
  • E. K. Cheruiyot, M. Haile-Mariam, B. G. Cocks, I. M. MacLeod, R. Mrode, J. E. Pryce, Functionally prioritised wholegenome sequence variants improve the accuracy of genomic prediction for heat tolerance. Genet. Sel. Evol., 54, 17 (2022) https://doi.org/10.1186/s12711-022-00708-8 [CrossRef] [Google Scholar]
  • D. Liang, C. L. Wood, K. J. McQuerry, D. L. Ray, J. D. Clark, J. M. Bewley. Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J. Dairy Sci., 96, 5072–5081 (2013) https://doi.org/10.3168/jds.2012-6537 [CrossRef] [Google Scholar]
  • A. M. Pereira, E. L. Titto, P. Infante, C. G. Titto, A. M. Geraldo, A. Alves, T. M. Leme, F. Baccari Jr., J. A. Almeida, Evaporative heat loss in Bos taurus: Do different cattle breeds cope with heat stress in the same way? J. Therm. Biol., 45, 87–95 (2014) https://doi.org/10.1016/j.jtherbio.2014.08.004 [CrossRef] [Google Scholar]
  • S. D. Mesgaran, A. Eggert, P. Höckels, M. Derno, and B. Kuhla. The use of milk Fourier transform mid-infrared spectra and milk yield to estimate heat production as a measure of efficiency of dairy cows. J. Anim. Sci. Biotechnol, 11, 43 (2020) https://doi.org/10.1186/s40104-020-00455-0 [CrossRef] [Google Scholar]
  • E. K. Cheruiyot, M. Haile-Mariam, B. G. Cocks, I. M. MacLeod, R. Xiang, and J. E. Pryce. New loci and neuronal pathways for resilience to heat stress in cattle. Sci. Rep., 11, 16619 (2021) https://doi.org/10.1038/s41598-021-95816-8 [CrossRef] [Google Scholar]
  • L. M. Jensen, E. A. Jannaman, J. E. Pryce, A. De Vries, P. J. Hansen, Effectiveness of the Australian breeding value for heat tolerance for discriminating responses of lactating Holstein cows to heat stress. J. Dairy Sci., 105, 7820–7828 (2022) https://doi.org/10.3168/jds.2021-21741 [CrossRef] [Google Scholar]
  • P. Rudenko, Yu. Vatnikov, S. Engashev, et. all., The role of lipid peroxidation products and antioxidant enzymes in the pathogenesis of aseptic and purulent inflammation in cats, J. Adv. Vet. Anim. Res., 8(2), 210–217 (2021) [CrossRef] [Google Scholar]
  • H.D. Norman, Guinan F.L., Megonigal J.H. Jr, and João Dürr. State and national standardized lactation averages by breed for cows calving in 2020 (2020) [Google Scholar]
  • L. Polsky, M. A. G. von Keyserlingk, Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci., 100, 8645–8657 (2017) http://doi.org/10.3168/jds.2017-12651 [CrossRef] [Google Scholar]
  • S. E. Wohlgemuth, Y. Ramirez-Lee, S. Tao, A. P. A. Monteiro, B. M. Ahmed, and G. E. Dahl. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J. Dairy Sci., 99, 4875–4880 (2016) https://doi.org/10.3168/jds.2015-10649 [CrossRef] [Google Scholar]
  • T. F. Fabris, J. Laporta, A. L. Skibiel, F. N. Corra, B. D. Senn, S. E. Wohlgemuth, and G. E. Dahl. Effect of heat stress during early, late, and entire dry period on dairy cattle. J. Dairy Sci., 102, 5647–5656 (2019) https://doi.org/10.3168/jds.2018-15721 [CrossRef] [Google Scholar]
  • M. R. Carvalho, F. Peñagaricano, J. E. P. Santos, T. J. DeVries, B. W. McBride, E. S. Ribeiro, Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows. J. Dairy Sci., 102, 11701–11717 (2019) https://doi.org/10.3168/jds.2019-17025 [CrossRef] [Google Scholar]
  • E.R. Shaykhutdinova, V.A. Palikov, Y.A. Palikova et all. Effect of Standard and High-Fat Diets during Modeling of Streptozotocin-Induced Diabetes in Rats on the Development of Complications, Bull. Exp. Biol. Med., 170(6), 737-740 (2021) [CrossRef] [PubMed] [Google Scholar]
  • V. Bronzo, V. Lopreiato, F. Riva, M. Amadori, G. Curone, M. F. Addis, P. Cremonesi, P. Moroni, E. Trevisi, B. Castiglioni, The role of innate immune response and microbiome in resilience of dairy cattle to disease: The mastitis model. Animals (Basel), 10, 1397 (2020) https://doi.org/10.3390/ani10081397 [CrossRef] [PubMed] [Google Scholar]
  • D. Wolfenson, Z. Roth. Impact of heat stress on cow reproduction and fertility. Anim. Front, 9, 32–38 (2019) https://doi.org/10.1093/af/vfy027 [CrossRef] [Google Scholar]
  • P.A. Rudenko, A.N. Murashev, Technological process of integrated probiotics sorption drugs «Dilaksil» and «Sorbelact», Russian J. of Biopharmaceuticals, 9(3), 49-54 (2017) [Google Scholar]
  • S.Yu. Smolentsev, A.H. Volkov, E.K. Papunidi, et. all., Influence of para-aminobenzoic acid on young cattle, International Journal of Research in Pharmaceutical Sciences, 11(2), 1481-1485 (2020) [CrossRef] [Google Scholar]
  • Yu. Vatnikov, M. Yousefi, S. Engashev, et al., Clinical and hematological parameters for selecting the optimal dose of the phytopreparation “Deprim”, containing an extract of the herb Hypericum perforatum L., in husbandry, Int. J. of Pharm. Res., 12(S.1), 2731-2742 (2020) [Google Scholar]
  • V.A. Palikov, Y.A. Palikova, N.A. Borozdina, et. al., A novel view of the problem of Osteoarthritis in experimental rat model, Res. Res. in Pharm., 6(2), 19-25 (2020) [CrossRef] [Google Scholar]
  • Yu. Vatnikov, I. Donnik, E. Kulikov, et. al., Effectiveness of Hypericum Perforatum L. phytosorbent as a part of complex therapy for acute non-specific bronchopneumonia, Int. J. of Pharm. Res., 12(S.1), 1108-1116 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.