Open Access
Issue |
BIO Web Conf.
Volume 145, 2024
International Scientific Forestry Forum 2024: Forest Ecosystems as Global Resource of the Biosphere: Calls, Threats, Solutions (Forestry Forum 2024)
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 11 | |
Section | Genetics, Post-Genomic Technologies, Biotechnology, Breeding and Seed Production | |
DOI | https://doi.org/10.1051/bioconf/202414502017 | |
Published online | 28 November 2024 |
- Shrivastava, P. & Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22, 123–131 (2014). [Google Scholar]
- Shahid, S. A., Zaman, M. & Heng, L. in Springer eBooks 43–53 (2018). doi:10.1007/978-3-319-96190-3_2 [Google Scholar]
- Corwin, D. L. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science 72, 842–862 (2020). [Google Scholar]
- Shinde, G. S., Sapkale, S. J. & Sapkale, J. B. The Disastrous Effects of Soil Salinity and pH on Environmental Systems. Disaster Advances 16, 53–62 (2023). [CrossRef] [Google Scholar]
- Kulmatov, R., Alimov, A. & Opp, C. Determination and assessment of the groundwater table and mineralization in irrigated areas (Xojeli district, Republic of Karakalpakstan). BIO Web Conf. 93, 04014 (2024). [CrossRef] [EDP Sciences] [Google Scholar]
- Boltabaev, A. et al. Identification of the major insect pests and their biological characteristics in apple orchards (Uzbekistan). BIO Web Conf. 126, 01006 (2024). [CrossRef] [EDP Sciences] [Google Scholar]
- Shahid, S. A. Developments in Soil Salinity Assessment, Modeling, Mapping, and Monitoring from Regional to Submicroscopic Scales. in Developments in Soil Salinity Assessment and Reclamation (eds. Shahid, S. A., Abdelfattah, M. A. & Taha, F. K.) 3–43 (Springer Netherlands, Dordrecht, 2013). doi:10.1007/978-94-007-5684-7_1. [CrossRef] [Google Scholar]
- Kulmatov, R., Groll, M., Rasulov, A., Soliev, I. & Romic, M. Status quo and present challenges of the sustainable use and management of water and land resources in Central Asian irrigation zones - The example of the Navoi region (Uzbekistan). Quaternary International 464, 396–410 (2017). [Google Scholar]
- Vessey, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586 (2003). [CrossRef] [Google Scholar]
- Hemavathi, V. N., Sivakumr, B. S., Suresh, C. K. & Earanna, N. Effect of Glomus fasciculatum and plant growth promoting rhizobacteria on growth and yield of Ocimum basilicum. J. Agric. Sci. 19, 17–20 (2006). [Google Scholar]
- Hongda, C., Jochen, W. & Fereidoon, S. Emerging technology has shown great potential for delivering bioactive compounds in functional foods to improve human health. Nanotechnol. Nutraceuticals Funct. Foods Food Technol. 3, 30–36 (2006). [Google Scholar]
- Fatma A. Gharib, Lobna A. Moussa and Osama N. Massoud. Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. Int. J. Agri. Biol. 10, 381–387 (2008). [Google Scholar]
- Yadegari, M. Foliar application of micronutrients on essential oils of borago, thyme and marigold. J. Soil Sci. Plant Nutr. 4, 949–964 (2015). [Google Scholar]
- Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annual Review of Genetics 50, 211–234 (2016). [CrossRef] [PubMed] [Google Scholar]
- Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology 18, 607–621 (2020). [CrossRef] [PubMed] [Google Scholar]
- Glick, B. R. & Gamalero, E. Recent Developments in the Study of Plant Microbiomes. Microorganisms 9, 1533 (2021). [CrossRef] [PubMed] [Google Scholar]
- Bulgarelli, D., Rott, M., Schlaeppi, K., Van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T. & Schulze-Lefert, P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012). [CrossRef] [PubMed] [Google Scholar]
- Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T. G., Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G. & Dangl, J. L. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012). [CrossRef] [Google Scholar]
- Murodova, S., Sobirova, M., Kiryigitov, X., Halkuzieva, M. & Kuvondikova, D. The influence of plant growth-promoting rhizobacteria (PGPR) on the cultivation of Cynara Scolymus L. under salinity stress. E3S Web of Conferences 434, 03006 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- Halkuzieva, M., Qiryigitov, X., Abduazizov, B., Sobirova, M. & Usmonova, B. Growth and development of Ferula foetida Regel (Bunge) and Ferula tadshikorum Pimenov species in different environments. E3S Web of Conferences 421, 04006 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- Khamraeva, D. T., Halkuzieva, M. A. & Bussmann, R. W. Bio-morphological properties of Ferula tadshikorum Pimenov and Ferula foetida (Bunge) Regel under plantation conditions. Plant Science Today (2022). doi:10.14719/pst.1863 [Google Scholar]
- Vorholt, J. A. Microbial life in the phyllosphere. Nature Reviews Microbiology 10, 828–840 (2012). [CrossRef] [PubMed] [Google Scholar]
- Bodenhausen, N., Horton, M. W. & Bergelson, J. Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE 8, e56329 (2013). [CrossRef] [PubMed] [Google Scholar]
- Mordukhova, E. A., Sokolov, S. L., Kochetkov, V. V., Kosheleva, I. A., Zelenkova, N. F. & Boronin, A. M. Involvement of naphthalene dioxygenase in indole-3-acetic acid biosynthesis byPseudomonas putida. FEMS Microbiology Letters 190, 279–285 (2000). [CrossRef] [PubMed] [Google Scholar]
- Geremia, R. A., Pușcaș, M., Zinger, L., Bonneville, J. & Choler, P. Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands. New Phytologist 209, 1196–1207 (2015). [Google Scholar]
- Bender, C., Rangaswamy, V. & Loper, J. POLYKETIDE PRODUCTION BY PLANT-ASSOCIATED PSEUDOMONADS. Annual Review of Phytopathology 37, 175–196 (1999). [CrossRef] [PubMed] [Google Scholar]
- Sindhu, S. S. & Dadarwal, K. R. Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiological Research 156, 353–358 (2001). [CrossRef] [PubMed] [Google Scholar]
- Compant, S., Duffy, B., Nowak, J., CléMent, C. & Barka, E. A. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology 71, 4951–4959 (2005). [CrossRef] [PubMed] [Google Scholar]
- Vassilev, N., Vassileva, M. & Nikolaeva, I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology 71, 137–144 (2006). [CrossRef] [PubMed] [Google Scholar]
- Vardharajula, S., Ali, S. Z., Grover, M., Reddy, G. & Bandi, V. Drought-tolerant plant growth promotingBacillusspp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions 6, 1–14 (2010). [Google Scholar]
- Tortora, M. L., Díaz-Ricci, J. C. & Pedraza, R. O. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology 193, 275–286 (2011). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.