Issue |
BIO Web Conf.
Volume 8, 2017
2016 International Conference on Medicine Sciences and Bioengineering (ICMSB2016)
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 7 | |
Section | Session I: Medicine | |
DOI | https://doi.org/10.1051/bioconf/20170801056 | |
Published online | 11 January 2017 |
The role of Purα in neuronal development, the relationship between Purα and epilepsy in the current researches
1 Ningxia Key Laboratory of Cerebrocranial Diseases, the Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
2 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
a Corresponding author: Jianqi@gmail.com
As a ubiquitous protein in the body, Purα has been considered to possess multiple regulatory functions from DNA replication and transcription to RNA transport and translation. The recent studies have proved that Purα protein played a vital role in neuronal development with the solid and abundant evidence both in transgenic mice and human genetic DNA analysis. The Purα knocked out mice models have been successfully established in two independent research groups and their results demonstrated that lack of Purα alters postnatal brain development. Mice lacking of Purα display decreased neurogenesis and impaired neuronal development. In the mouse brain, the expression level of Purα seems to be regulated with brain development. It starts to express Purα after birth and quickly reach to highest level in the third week. The recent studies also have proved that some neurodegenerative disease also linked with Purα, such as Fragile X-associated tremor/ataxia syndrome. rCGG-mediated neuronal toxicity could be modulated by heterogeneous nuclear ribonucleoprotein A2/B1 and Purα, which is rCGG-repeat-binding proteins. The 5q31.3 microdeletion syndrome is another disorders that is associated with the mutation of Purα gene, it has been demonstrated that all the symptoms such as the neurocognitive impairment, neurodevelopmental delay and learning disability are caused by the mutation of Purα gene. In this mini review, we will retrospectively review the current progress of Purα in neuronal development and try to figure out the connections between these observed phenomena and the biological function of Purα.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.