Issue |
BIO Web Conf.
Volume 8, 2017
2016 International Conference on Medicine Sciences and Bioengineering (ICMSB2016)
|
|
---|---|---|
Article Number | 03017 | |
Number of page(s) | 6 | |
Section | Session III: Biomedical Engineering | |
DOI | https://doi.org/10.1051/bioconf/20170803017 | |
Published online | 11 January 2017 |
Ultrasound elasticity imaging using Golay code
School of Software Engineering, Chengdu University of Information Technology, Chengdu, China
a Corresponding author: penghui@cuit.edu.cn
Ultrasound elasticity imaging is becoming a new diagnostic tool for clinicians to detect lesions or cancers in tissues. In this paper, Golay code is applied to elasticity imaging to improve its quality. Phase-zero algorithm is employed as the displacement estimator, and the amplitude modulation correction location estimate method is used as the location estimator. We compared the performance of Golay code and the conventional short pulse in simulation method. The simulation results demonstrate that Golay code can achieve higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low echo signal-to-noise ratio (eSNR) conditions, because the eSNR gain with Golay code increases the accuracy of the displacement estimates. However, in high eSNR conditions, Golay code performs worse than the short pulse, because the range sidelobe level of Golay code will decrease the SNRe and the performance of Golay code depends mainly on its range sidelobe level in high eSNR conditions. Therefore, the optimal conditions for Goaly code to be used in elasticity imaging are the low eSNR, great depth or high attenuation conditions.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.