Issue |
BIO Web Conf.
Volume 10, 2018
Contemporary Research Trends in Agricultural Engineering
|
|
---|---|---|
Article Number | 02028 | |
Number of page(s) | 5 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/bioconf/20181002028 | |
Published online | 26 March 2018 |
Influence of fineness level and applied agglomeration pressure of peppermint herb (Mentha piperita L.) on the mechanical properties of the obtained product
University of Agriculture in Krakow, Faculty of Production and Power Engineering, Balicka 116 B, 30-149 Krakow, Poland
* Corresponding author: urszula.sadowska@ur.krakow.pl
The objective of the conducted study was to evaluate the impact of the pressure agglomeration process of peppermint herb on the mechanical properties of the obtained product. The separated fractions of peppermint with 0.5-2.5 and 2.5-5 mm particles were compacted using a hydraulic press Fritz Heckert EU 20, with pressure 50, 100, 150 and 200 MPa. A closed matrix with the compression chamber diameter of 15.6 mm was used. Every time, a 2-g herb sample (corresponding to the weight of tea used for the production of tea bags) was poured into the matrix. Thus, compacted herb in the form of a straight cylinder was obtained. When producing the agglomerate compaction work was determined. Strength tests of the obtained agglomerate were conducted using the MTS Insight 2 testing machine. The density of the produced agglomerate, its compaction level and strength in the Brazilian test was calculated.
The obtained results indicate that the values of the tested parameters increase with the increase of pressure in the tested range, yet differences occur between the tested herb fractions. Typically, the agglomerate produced from 0.5-2.5 mm fraction is characterized by a greater density, and the higher level of agglomerate compaction is obtained using 2.5-5 mm herb fraction. The highest strength determined using Brazilian test was determined for agglomerate produced from 0.5-5 mm peppermint herb fraction at 200 MPa pressure and 0.5-2.5 mm fraction using 150 and 200 MPa pressure.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.