Issue |
BIO Web Conf.
Volume 13, 2019
CO.NA.VI. 2018 - 7° Convegno Nazionale di Viticoltura
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 5 | |
Section | Site Selection and Precision Viticulture | |
DOI | https://doi.org/10.1051/bioconf/20191302005 | |
Published online | 01 April 2019 |
VINESYM: an integrated vine and grapevine mathematical model for vegetative development and production quality forecast
TEA Engineering s.r.l, Via Ponte a Piglieri, 8,
56121, PISA
* Corresponding author: vittorio.faluomi@tea-group.com
The present work deal with the development of a mathematical model able to predict, using time dependent meteorological data, soil and vine characteristics, the growing of a vine and grapevine in terms of leaf area, shoot length, fruit and vegetative mass and finally sugar and acid content of the berry. The model is based upon a source-sink relationship approach, integrated with a soil-atmosphere model, where water accumulation in soil, sap flow across vine are coupled with potential carbon demand functions to directly consider possible water and temperature stresses. The model includes also a N2 sink-source approach, limiting growth rate following N2 availability. Finally, a mechanistic model to evaluate sugar accumulation and a correlation-based model for acid concentration evaluation in the berry is coupled with vegetative growth, to provide the information required to manage vineyard operations and evaluate the impact to the potential wine quality. The primary distinctive trait of this model is then the integration and feedback among prediction of grapevine quality model (sugar an acid content) and vegetative growth model, using a common initial ad boundary conditions data set.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.