Issue |
BIO Web Conf.
Volume 13, 2019
CO.NA.VI. 2018 - 7° Convegno Nazionale di Viticoltura
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 5 | |
Section | Vineyard Management and Adaptation to Climate Change | |
DOI | https://doi.org/10.1051/bioconf/20191304009 | |
Published online | 01 April 2019 |
Biochemical indicators of soil fertility in vineyards with different conservative management systems
1
CREA Research Centre for Viticulture and Enology, Branch of Gorizia, 34170
Gorizia, Italy
2
Perleuve Srl, 34071 Cormons (GO), Italy
* Corresponding author: claudio.mondini@crea.gov.it
Biochemical parameters are particularly suited to evaluate soil fertility because soil microorganisms play a pivotal role in determining soil quality and functionand are very sensitive to changes in soil management and environmental conditions. For such reasons, in this work, we used several biochemical indexes to assess the effect on soil fertility of 3 different conservative management systems of vineyards. The managements compared were chemical weed control vs permanent grass (CWC/MWC), land levelling vs undisturbed soil (LL/US), conventional farming vs organic farming (CON/ORG). The following parameters were determined in 2014 and 2015 on soil samples: total organic C (TOC), extractable N (EN), soil basal respiration (SBR), microbial biomass C (BC), microbial quotient (BC/TOC) and metabolic quotient (qCO2 = SBR/BC). Results showed that biochemical indicators were effective in detecting changes in soil fertility between compared systems. In particular, conservative systems (MWC, US and ORG) showed a larger and more efficient microbial biomass and enhanced EN content in comparison to the relative conventional systems. Furthermore BC/TOC and qCO2 indicated higher C use efficiency in conservative systems. Results as a whole indicate that conservative management systems aimed to maintain and enhance soil organic matter displayed a higher level of soil fertility.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.