Issue |
BIO Web Conf.
Volume 20, 2020
1st International Conference on Tropical Wetland Biodiversity and Conservation (ICWEB 2019)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 5 | |
Section | Conservation and Management | |
DOI | https://doi.org/10.1051/bioconf/20202001006 | |
Published online | 01 June 2020 |
Rice Straw Composting by Cellulolytic Bacteria Isolate and Its Application on Rice in Acid Sulfate Soils
Indonesian Swampland Agricultural Research Institute (ISARI), Banjarbaru, Kalimantan Selatan
* Corresponding author: yulibalittra70@yahoo.com
High acidity in acid sulfate soils due to pyrite oxidation results in increased Al3+ and Fe2+ activity which inhibits the growth of rice plants. The application of organic matter (compost) is one of the technology to manage acid sulfate soil. This study aims to obtain cellulolytic bacterial isolates that are superior in composting and improving rice growth in acid sulfate soil. The experiment carries out in the laboratory and glasshouse of the Indonesian Swampland Agriculture Research Institute (ISARI), Banjarbaru, Indonesia on May-November 2017. The experimental to obtain cellulolytic bacteria and water content that can accelerate composting is arranged by factorial using a complete randomized design with three replication First factor were cellulolytic bacteria application (without application/control, BS 1.6, BS 1.9, BS 2.2 and BS 2.5), while the second factor was water content (50%, 100%, and 150%). The effect of compost application with cellulolytic bacterial to rice growth arranged by factorial completely randomized design with 3 replications. The first factor was cellulolytic bacteria application (without application/control, BS 1.6, BS 1.9, and BS 2.2), while the second factor was composting condition (muddy waterlogged and waterlogged 5 cm depth). The result showed that the ability of cellulolytic bacteria to reduce C/N straw was not different. Only differences in water content affect the reducing C/N ratio of straw. The average C/N ratio of straw compost made with 50%, 100%, and 150% water content is 35.59; 29.71, and 29.21. Application of compost made under muddy waterlogged and inoculated BS1.9 and BS2.2 can increase the number of tillers, while those inoculated BS1.6 and BS1.9 can increase the rice shoot dry weight of Inpara 2. The suggest that cellulolytic bacterial inoculation can improve the quality of compost so that the growth of rice is better.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.