Issue |
BIO Web Conf.
Volume 21, 2020
XI International Scientific and Practical Conference “Biological Plant Protection is the Basis of Agroecosystems Stabilization”
|
|
---|---|---|
Article Number | 00034 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/bioconf/20202100034 | |
Published online | 22 June 2020 |
Biological protection of spring wheat from root rot in the forest-steppe zone of Eastern Siberia
1 FSBSE Irkutsk Scientific Research Institute of Agriculture, Dachnaya str., 14, Pivovarikha, Irkutsk Region, 664511, Russia
* Corresponding author: gnu_iniish_nauka@mail.ru
We present the results of the trial of the biological drug BisolbiSan (Bacillus subtillis strain H-13, isolated by the All-Russian Research Institute of Agricultural Microbiology) for treatment of spring wheat seeds in comparison with the widely popular chemical fungicides Maxim and Maxim Plus in the forest-steppe zone of Eastern Siberia in 2016–2018. BisolbiSan contributed to a decrease in total seed contamination by 2.4 times compared to control, which was practically at the level of the chemical fungicide Maxim. Maxim and Maxim Plus oppressed the growth of the sprout and the main germ line, while BisolbiSan stimulated the growth and development of the root system, and did not inhibit the growth of the sprout. The prevalence of root rot in the variant with BisolbiSan was lower compared to control by 54 %, effectiveness of which was not significantly inferior to that of chemical protectants. In comparison with control variant, BisolbiSan increased vitreous content of grain by 16.9 %, the content of crude gluten by 3.9 %, contributed to obtaining a statistically reliable increase in the yield of 0.38 tons per hectare, which did not differ significantly from the increase in the variant with chemical protectants. In our experiment, the payback of 1 ruble of costs when treating seeds with BisolbiSan was 1.7, which is 0.5 and 0.2 rubles higher compared to Maxim and Maxim Plus, respectively. The profitability of the yield increase using BisolbiSan was 70.9 %, which is 54.5 % and 20.6 % more than when using Maxim and Maxim Plus, respectively.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.