Issue |
BIO Web Conf.
Volume 23, 2020
II International Scientific Conference “Plants and Microbes: The Future of Biotechnology” (PLAMIC2020)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 7 | |
Section | Microbial Biotechnology | |
DOI | https://doi.org/10.1051/bioconf/20202302013 | |
Published online | 14 August 2020 |
Identification of arbuscular mycorrhizal fungi in soils of the North Caucasus based on Illumina MiSeq data for ITS1 and ITS2 regions
1 All-Russia Research Institute for Agricultural Microbiology, Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, 196608 Saint Petersburg, Russia
2 Komarov Botanical Institute, Laboratory of Biosystematics and Cytology, 197376 Saint Petersburg, Russia
* Corresponding author: yurkovandrey@yandex.ru
The objective of our research was to analyze the efficiency of identification of arbuscular mycorrhizal fungi (AMF) for 2 regions: ITS1 and ITS2 regions of AMF DNA isolated from the soils of the North Caucasus (Karachay-Cherkessia). For the first time the necessity of different AMF species identification using both ITS regions was revealed, but not one region. The research demonstrated: 1) the set of taxa is different using ITS1- and ITS2-based identification; 2) analysis of the ITS1 region reveals a greater number of operational taxonomic units; 3) ITS2 allows identification of AMF at the species level more often. Sample preparation for Illumina MiSeq analysis was optimized. Obligatory stages in the sample preparation were the purification of DNA in the agarose gel in Silica after isolation, as well as separate amplification of ITS1 and ITS2 followed by combining and joint sequencing for each sample. The results showed the highest AMF biodiversity for the 176Te sample from the ecosystem of the subalpine meadow of the southeastern slope of Malaya Hatipara mountain (43°25′48.0″N 41°42′31.0″E; 2401 m above sea level), in which 8 species of AMF were identified (Archaeospora spainiae, Claroideoglomus claroideum, Diversispora versiformis, Entrophpora infrequens, Funneliformis mosseae, Glomus indicum, Paraglomus laccatum, Rhizophagus irregularis).
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.