Issue |
BIO Web Conf.
Volume 28, 2020
The 3rd International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2020)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 5 | |
Section | Drug Development and Nutraceutical | |
DOI | https://doi.org/10.1051/bioconf/20202804001 | |
Published online | 17 December 2020 |
The biofilm inhibition and eradication activity of curcumin againts polymicrobial biofilm
1 Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur, 75124, Indonesia
2 Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
3 Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia.
* Corresponding author: hertiani@ugm.ac.id
Curcumin is a polyphenol compound that is a member of the ginger family (Zingiberaceae), which has potential as an antibacterial, antifungal, and polymicrobial antibiofilm on the catheter. Still, its inhibitory activity and eradication of non-catheter polymicrobial antibiotics against S. aureus, P. aeruginosa, E. coli, and C. albicans have never been reported. The discovery of a candidate polymicrobial anti-biofilm drug is indispensable for overcoming infections associated with biofilms. This study aims to determine the inhibitory activity and eradication of curcumin on polymicrobial biofilms. Inhibition testing and eradication activity of polymicrobial biofilms were performed using the microtiter broth method. The effectiveness of curcumin on polymicrobial biofilms was analyzed using minimum biofilm inhibition concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50). The mechanism of action of curcumin against polymicrobial biofilms is tested using scanning electron microscopy (SEM). Curcumin 1 % b/v gives biofilm inhibition activity in the mid-phase and maturation of 62.23 % ± 0.01, 59.43 % ± 0.01, and can eradicate polymicrobial biofilms by 55.79 % ± 0.01 and not much different with nystatin drug control activity. The results also provide evidence that curcumin can damage the extracellular polymeric matrix (EPS) polymicrobial biofilms of S. aureus, P. aeruginosa, E. coli, and C. albicans and damage the morphology of polymicrobial biofilms. Therefore, curcumin can be developed as a candidate for new antibiofilm drugs against polymicrobial biofilms S. aureus, P. aeruginosa, E. coli dan C albicabs.
Key words: Biofilm / eradication / infection / polymicrobial bioflm / resistence
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.