Issue |
BIO Web of Conferences
Volume 78, 2023
International Scientific-Practical Conference “Modern Trends of Science, Innovative Technologies in Viticulture and Winemaking” (MTSITVW2023)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 6 | |
Section | Genetic Resources, Genetics, Genomics, Bioengineering and Selection | |
DOI | https://doi.org/10.1051/bioconf/20237802003 | |
Published online | 08 December 2023 |
Changes in the relative copy numbers of chloroplast and mitochondrial DNA in the leaves of Vitis vinifera L. after high-temperature treatment in vitro
1 V.I. Vernadsky Crimean Federal University, Simferopol, Russia
2 Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
* Corresponding author: lavrkryukov@gmail.com
In the context of global warming, studying the consequences of increased temperature on agricultural crops becomes important for predicting the shortand long-term impacts on productivity. The effects of elevated temperature on grapevine plants lead to increased yield losses in viticulture. Micropropagated grapevine plants of the ‘Chardonnay’ variety were grown in vitro on MS medium and subjected to heat treatment at 45°C for 120 minutes. The control group of plants was not exposed to heat treatment. The levels of relative copy numbers of chloroplast and mitochondrial DNA were determined in leaf tissues of all plant groups using the RT-PCR method 30 days after heat treatment. In the group of plants subjected to heat treatment, statistically significant (p>0.05) reductions in the relative copy numbers of mitochondrial and chloroplast DNA were observed compared to the control group, with a decrease of over 30%. The copy number of chloroplast DNA exceeded that of mitochondrial DNA by more than 20 times in both the experimental and control groups. Heat treatment of micropropagated grapevine plants in vitro resulted in a closer correlation (r=+0.86) in the regulation of activity between these organelles, alongside the decrease in relative copy numbers of both mitochondrial and chloroplast DNA. This study demonstrates the promising use of relative copy numbers of chloroplast and mitochondrial DNA in plant leaves to investigate their potential physiological response to adverse environmental factors.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.