Issue |
BIO Web Conf.
Volume 85, 2024
3rd International Conference on Research of Agricultural and Food Technologies (I-CRAFT-2023)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 11 | |
Section | Research of Agricultural and Food Technologies | |
DOI | https://doi.org/10.1051/bioconf/20248501001 | |
Published online | 09 January 2024 |
Chemical components of different solvent extracts of Asclepias curassavica L. and antibacterial effect of the extracts on tomato pathogens
1 Department of Organic Agricultural Management, Osmaniye Korkut Ata University, 80760, Osmaniye, Turkey
2 Department of Field Crops, Faculty of Agriculture, Cukurova University, 01330, Adana, Turkey
3 Department of Plant Protection, Faculty of Agriculture, Cukurova University, 01330, Adana, Turkey
* Corresponding author: kirici@cu.edu.tr
The use of environmentally friendly and sustainable agricultural methods in the control of diseases and pests is of great importance. In both conventional and organic agricultural production systems, the utilization of various plant extracts as part of integrated pest management has gained significance in recent years. The chemical constituents of various solutions derived from the flowers, leaves, and roots of the Asclepias curassavica L. plant were investigated, along with the possibilities of utilizing these solutions in the control of tomato plant pathogenic bacteria. As a result of the analysis, acetic acid in 60% and 80% ethanol solutions, as well as acetic acid methy ester in 60% and 80% methanol solutions, were detected in the flowers, leaves, and roots. The effects of A. curassavica flower, leaf, and root extracts, prepared using three different solvents (water, methanol, and ethanol), were investigated on eight different pathogenic bacteria (Agrobacterium tumefaciens, Clavibacter michiganensis, Dickeya zeae, Pectobacterium caratovorum, Pseudomonas phaseolicola, Pseudomonas tomato, Pseudomonas viridiflava, and Xanthomonas euvesicatoria) that cause diseases in plants. Several main compounds such as acetic acid, acetic acid. methyl ester, Furfural, 2-Furanmethanol, 4H-Pyran-4-one. 2.3-dihydro-3.5-dihydroxy-6-methyl-, Glycerin, Benzo furan. 2.3-dihydro- and 5-Hydroxy methyl furfural were identified as analyzed by GC-MS with different concentrations of ethanol and methanol solutions used for the flower, leaves and root of A. curassavica plants. The flower extract prepared with 80% ethanol exhibited a higher inhibition zone (ranging from 1.5 mm to 5.3 mm) in all pathogens, compared to other applications. The successful suppression effect of A. curassavica flower extracts on this disease is promising, especially in organic farming areas. Additionally, since it is environmentally friendly and sustainable, it can be included in integrated control methods to prevent the loss of productivity caused by diseases.
Key words: Asclepias curassavica / components / Clavibacter sp / Pseudomonas sp / Xanthomonas sp
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.