Issue |
BIO Web Conf.
Volume 85, 2024
3rd International Conference on Research of Agricultural and Food Technologies (I-CRAFT-2023)
|
|
---|---|---|
Article Number | 01075 | |
Number of page(s) | 5 | |
Section | Research of Agricultural and Food Technologies | |
DOI | https://doi.org/10.1051/bioconf/20248501075 | |
Published online | 09 January 2024 |
Construction and Evaluation of The Wind Tunnel Technique for Estimating Ammonia Volatilization from Land
1 Cukurova University, Faculty of Agricultural, Agriculture Machinery and Technologies Engineering, 01330, Adana, Turkey
2 Isparta University of Applied Sciences, Faculty of Agriculture, Department of Agricultural Machinery and Technology Engineering, Isparta, Turkey; kamilekinci@isparta.edu.tr
3 Adana Metropolitan Municipality, Seyhan, Adana, Turkey
4 Eastern Mediterranean Agricultural Research Institute Directorate, Adana, Turkey; yasemin.vurarak@tarimorman.gov.tr
* Corresponding author: lale.ghanizadeh@yahoo.com
Agriculture is mainly responsible for ammonia (NH3) volatilization. Among all agricultural activities, livestock and especially animal manures are the most important sources of NH3 emissions. Manure application which not only exacerbate greenhouse gas emissions, but also leads to eutrophication of water bodies. Many studies have shown that surface application of manure can lead to large ammonia losses and run off, on the other hand that tillage can substantially reduce these losses. It is necessary to determine ammonia flux from manure-amended soils to improve management manure handling practices for minimizing agriculture’s impact on the environment. From this point of view, one of the direct measured method was used to determine this volatilization. The objections of this work were: i) The design, construction, physical calibration, and operation of the little wind tunnels. ii) Recover ammonia loss from bovine slurry by little wind tunnel method. iii) Determine the effect of slurry application depth on ammonia emission. The little wind tunnel system consisted of plastic canopy covering the treatment area (2 m long by 0.5 m wide). By was using a fan, it was imitated the natural wind speed in the test area (1-1.5 m/s). Nitrogen losses were measured with this method in surface application, 50 mm and 100 mm subsurface. In the surface application, the highest ammonia emission was observed. It was approximately 68% higher in compared to another methods. There is significantly (P=0.05) different in the ammonia emission, between the surface apply method and injection manure in soil methods. But There isn’t any significantly different between ammonia emission amount in injection subsurface methods (100 mm and 50 mm deep).
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.