Issue |
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 9 | |
Section | Technology and Management Related to Marine and Fisheries Resources | |
DOI | https://doi.org/10.1051/bioconf/20248902005 | |
Published online | 23 January 2024 |
Analysis of perforated fixed baffle at low filling ratio to reduce sloshing using SPH
Department of Naval Architecture, Faculty of Engineering, Universitas Diponegoro Jalan Prof. Soedarto, S.H, Kampus Undip Tembalang, Semarang - 50275, Indonesia
*) corresponding Author: anditrimulyono@lecturer.undip.ac.id
Prismatic tanks are used widely in various industrial applications, including marine and petroleum, due to their ease in design and storage capacity. However, these tanks often experience sloshing issues that can affect vessel stability. Sloshing effects can cause undesirable motions and impact the system's overall performance. This study focuses on analyzing the effect of perforated shapes on fixed baffles as a solution to reduce the sloshing effect in prismatic tanks. Baffle or anti-sloshing is an internal partition used to minimize the movement of liquid in the tank. The analysis method uses Smoothed particle hydrodynamics (SPH), which is a particle method or can be referred to as mesh-free computational fluid dynamics. The parameters tested include the perforated shape and the filling ratio of the water filling in the tank. The analysis found that the perforated form of the baffles has a significant effect on reducing the sloshing effect. The perforated shape of the fixed baffles has the same impact on reducing the sloshing effect of the prismatic tank. There is no significant difference in the ability of each baffle shape to overcome the sloshing problem. The findings from this study can guide designers or engineers in designing prismatic tanks that are more stable and reduce the effects of sloshing. Using baffles with the right perforated shape can optimize tank performance in maritime and shipping.
Key words: Sloshing / Stability / Perforated / Baffle / SPH
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.