Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00057 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/20249700057 | |
Published online | 05 April 2024 |
English-Arabic Phonetic Dataset construction
1 Jaber bin Hayyan University of Medical and Pharmaceutical Sciences
2 Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq
* Corresponding author: zaid.rajah@jmu.edu.iq
In the field of natural language processing, the effectiveness of a semantic similarity task is significantly influenced by the presence of an extensive corpus. While numerous monolingual corpora exist, predominantly in English, the availability of multilingual resources remains quite restricted. In this study, we present a semi- automated framework designed for generating a multilingual phonetic English- Arabic corpus, specifically tailored for application in multilingual phonetically and semantic similarity tasks. The proposed model consists of four phases: data gathering, preprocessing and translation, extraction IPA representation, and manual correction. Four datasets were used one of them was constructed from many sources. A manual correction was used at all the levels of the system to produce a golden standard dataset. The final dataset was in the form (English Word, English Phonetic, equivalent Arabic Word, and Arabic Phonetic). Also, a deep learning approach was used for extracting International Phonetic Alphabet (IPA) phonetic representation where the results for 13400 samples show that the Phonetic Error Rate (PER) and accuracy were 11.96% and 88.04 % respectively which are good results for producing IPA representation for unknown English and Arabic names.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.