Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00064 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/bioconf/20249700064 | |
Published online | 05 April 2024 |
Yield Forecast of Sugarcane Using Two Different Techniques in Discriminant Function Analysis
1 University of Alkafeel, Najaf, Iraq
2 PSG College of Arts and Science, Tamil Nadu, India
3 Plekhanov Russian University of Economics, Moscow, Russia
4 University of Delhi, New Delhi, India
5 JNKVV College of Agriculture, Rewa, India
6 South Ural State University, Chelyabinsk, Russia
* Corresponding author: ali.j.r@alkafeel.edu.iq
The present study aims to develop yield forecast models for the Sugarcane crop of the Coimbatore district in Tamilnadu using two different techniques namely Variables and Months in Discriminant function analysis. For this, the Sugarcane yield data for 57 years along with the monthly data on seven weather variables have been taken. For applying discriminant analysis, the yield data of sugarcane has been divided into two categories namely two groups and three groups. The discriminant scores from the two and three-group discriminant functions were employed as independent variables in the development of yield forecast models. The yield forecast models for both strategies were created utilizing scores and trend values as independent variables. The first 52 years of yield data (1960-2012) were used to create the model, and the last five years of data (2012-2016) were used for validation. The comparison has been made between two and three groups for both techniques. The results indicate the technique using the variable-wise method gives better results based on goodness of fit. Among the two categories in the variable-wise method, three groups performed better.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.