Open Access
BIO Web Conf.
Volume 17, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019)
Article Number 00125
Number of page(s) 5
Published online 28 February 2020
  • Evaluation of Potato Cultivars for Resistance against Water Deficit Stress under in Vivo Conditions Potato Res. 53, 383–392 (2010) DOI: 10.1007/s11540-010-9179-5. [Google Scholar]
  • J. Buijs, M. Martinet, F. de Mendiburu, M. Ghislain, Potential adoption and management of insectresistant potato in Peru, and implications for genetically engineered potato Environ. Biosafety Res. 4, 179–188 (2005) DOI: 10.1051/ebr:2006002. [EDP Sciences] [Google Scholar]
  • J. Heldak, E. Brutovska, A. Gallikova, Selection of valuable potato genotypes with introduced resistance genes derived from wild species Agricult. 55(3), 133–139 (2009) [Google Scholar]
  • L.B. Sergeeva, The influence of growing conditions on the yield and quality of potatoes in the Middle Urals, dissertation (Yekaterinburg, 2015) [Google Scholar]
  • A. Khan, V. Sovero, D. Gemenet, Genome-assisted Breeding for Drought Resistance Current Genomics 17(4), 330–342 (2016) DOI: 10.2174/1389202917999160211101417. [CrossRef] [PubMed] [Google Scholar]
  • T. Dronova, I. Dergacheva, Irrigated Agricult. 1, 6–7 (2013) [Google Scholar]
  • Y. Wang, K.J. Yang, X.C. Gong, L.P. Qi, Y. Feng, C. Liu, J. Yin, Evaluation of drought resistance in major potato cultivars Seed 35(9), 82–85 (2016) DOI: 10.16590/j.cnki.1001-4705.2016.09.082. [Google Scholar]
  • O. Prokhorova, Evaluation of hybrid potato populations from different types of accumulating crosses by field (horizontal) resistance to late blight and the creation of source material for selection, PhD dissertation (Moscow, 2013) [Google Scholar]
  • Y. Li, C. Colleoni, J. Zhang, Q. Liang, Y. Hu, H. Ruess, R. Simon, Y. Liu, Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato Mol. Plant 11(3), 473–484 (2018) DOI: 10.1016/j.molp.2018.01.009. [CrossRef] [PubMed] [Google Scholar]
  • A.S. Serebrovsky, Genetic analysis (Nauka, Moscow, 1970) [Google Scholar]
  • S. Borevich, Principles and methods of plant breeding (Kolos, Moscow, 1984) [Google Scholar]
  • R. Sharmaa, Vinay Bhardwaja, Dalamu Dalamua, S.K. Kaushikb et al., Identification of elite potato genotypes possessing multiple disease resistance genes through molecular approaches Scientia Horticulturae 179, 204–211 (2014) [Google Scholar]
  • D.V. Abrosimov, The principles of selection of parental pairs and selection methods for the breeding of potatoes for increased starchiness, PhD dissertation (Moscow, 2007) [Google Scholar]
  • A.V. Khutti, O.Yu. Antonova, N.V. Mironenko, T.A. Gavrilenko, O.S. Afanasenko, Potato resistance to quarantine diseases Vavilov J. of Genet. and Breeding 21(1), 51–61 (2017) DOI: 10.18699/VJ17.223 (In Russ.) [CrossRef] [Google Scholar]
  • S.B. Abrosimova, Improvement of methods for breeding potatoes for resistance to a golden cystforming nematode (globodera rostochiensis (woll.), PhD dissertation (Moscow, 2014) [Google Scholar]
  • I.M. Yashina, L.I. Kirsanova, G.I. Uzhovskaya, To the methodology for the selection of parental pairs for potato hybridization Sci. tr. Research Institute of Potato 33, 22–30 (Moscow, 1979) [Google Scholar]
  • M. Tester, P. Langridge, Breeding technologies to increase crop production in a changing world Sci. 327, 818–822 (2010) DOI: 10.1126/science.1183700 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.