Open Access
BIO Web Conf.
Volume 27, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2020)
Article Number 00109
Number of page(s) 8
Published online 25 November 2020
  • A.P. Merkulov, Vortex effect and its application in engineering (Mashinostroenie, Moscow, 1969) 183 p. [Google Scholar]
  • G.F. Nellis, S.A. Klein, The application of vortex tubes to refrigeration cycles, in: 9th Int. Refrigerat. and Air Condition. Conf. (West Lafayette, USA, 2002) [Google Scholar]
  • B.L. Ivanov, B.G. Ziganshin, R.F. Sharafeev, I.R. Sagbiev, Theory atomization fluid nozzles, Bull. of Kazan State Agrar. Univer., 14(2(53)), 95–99 (2019) [CrossRef] [Google Scholar]
  • B.L. Ivanov, B.G. Ziganshin, A.I. Rudakov, M.A. Lushnov, Assessment of distribution of drops of a disinfecting liquid by the surface processed, Bull. of Kazan State Agrar. Univer., 14(3(54)), 103–107 (2019) [CrossRef] [Google Scholar]
  • R. Sabirov, A. Valiev, L. Karimova, A. Dmitriev, D. Khaliullin, Influence of physical factors on viability of microorganisms for plant protection, in: 18th Int. Sci. Conf. Engineer. for Rural Developm. Proc., vol. 18 (Latvia Univer. of Life Sci. and Technol. Faculty of Engineer., Jelgava, 22–24 May 2019) pp. 555–562 [Google Scholar]
  • S. Eiamsa-ard, P. Promvonge, Review of RanqueHilsch effects in vortex tubes, Renew. Sustain. Energy Rev., 12(7), 1822–1842 (2008) [CrossRef] [Google Scholar]
  • A.I. Leont’ev, Gasdynamic methods of temperature stratification, Fluid dynamics, 37(4), 512–536 (2002) [CrossRef] [Google Scholar]
  • C.D. Fulton, Comments on the vortex tube, J. ASRE Refrigerat. Engng., 58 (1950) [Google Scholar]
  • T. Cockerill, Ranque – Hilsh vortex tube, Master thesis (University of Cambridge, 1995) [Google Scholar]
  • A.S. Noskov, A.V. Chait, A.P. Butymova et al., Energy effectiveness and economics expediency of using of climatic systems based on vortex tube, Magaz. of civil engineer., 1, 17–23 (2011) [Google Scholar]
  • S. Eiamsa-ard, P. Promvonge, Review of RanqueHilsch effects in vortex tubes, Renew. Sustain. Energy Rev., 12, 1822–1842 (2008) [CrossRef] [Google Scholar]
  • C.M. Gao, Experimental study on the RanqueHilsch vortex tube, PhD thesis (Techn. Univer., Eindhoven, 2005) [Google Scholar]
  • Y. Xue, The working principle of a Ranque–Hilsch vortex tube, PhD thesis (School of Mechan. Engineer.; Univer. of Adelaide, Australia, 2013) [Google Scholar]
  • Y. Xue, M. Arjomandi, R. Kelso, Experimental study of the thermal separation in a vortex tube, Exp. Therm. Fluid Sci., 46, 175–182 (2013) [CrossRef] [Google Scholar]
  • C. Gao, Experimental study on the Ranque – Hilsh vortex tube, PhD Study (2005) 151 p. [Google Scholar]
  • W. Fröhlingsdorf, H. Unger, Numerical investigations of the compressible flow and the energy separation in the RanqueeHilsch vortex tube, Int. J. of Heat and Mass Transfer, 42, 415–422 (1999) [CrossRef] [Google Scholar]
  • T. Farouk, B. Farouk, A. Gutsol, Simulation of gas species and temperature separation in the counterflow RanqueeHilsch vortex tube using the large eddy simulation technique, Int. J. of Heat and Mass Transfer, 52, 3320–3333 (2009) [CrossRef] [Google Scholar]
  • U. Behera, P.J. Paul, S. Kasthurirengan, R. Karunanithi, S.N. Ram, K. Dinesh et al., CFD analysis and experimental investigations towards optimizing the parameters of RanqueeHilsch vortex tube, Int. J. of Heat and Mass Transfer, 48, 1961–1973 (2005) [CrossRef] [Google Scholar]
  • M. Attalla, H. Ahmed, M. Salem Ahmed, A. AboElWafa, Experimental investigation for thermal performance of series and parallel Ranque-Hilsch vortex tube systems, Appl. Thermal Engineer., 123, 327–339 (2017) [CrossRef] [Google Scholar]
  • M. Alizadeh, Three dimensional numerical (3D CFD) study of effect of pressure-outlet and pressure-farfield boundary conditions on heat transfer predictions inside vortex tube, Progr. in Solar Energy and Engineer. Syst., 2(1), 21–25 (2018) [Google Scholar]
  • T. Dutta, K.P. Sinhamahapatra, S.S. Bandyopadhyay, Numerical investigation of gas species and energy separation in the Ranquee-Hilsch vortex tube using real gas model, Int. J. Refrigerat., 34, 2118–2128 (2011) [CrossRef] [Google Scholar]
  • A.S. Noskov, V.N. Alekhin, A.V. Khait, Numerical investigation of Ranque-Hilsch energy separation effect, Appl. Mech. Mater., 281, 355–358 (2013) [CrossRef] [Google Scholar]
  • F.R. Menter, M. Kuntz, R. Langtry, Ten Years of Experience with the SST Turbulence Model, In K. Hanjalic, Y. Nagano, M. Tummers (eds.) Turbulence, Heat and Mass Transfer 4 (Begell House Inc., 2003) pp. 625–632 [Google Scholar]
  • S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, Theory of Concentrated Vortices: an Introduction (Springer-Verlag, Berlin; Heidelberg, 2007) [Google Scholar]
  • S.S. Abdurakipov, V.M. Dulin, D.M. Markovich, Self-oscillations in a jet flow and gaseous flame with strong swirl, Thermophys., Aeromech., 25, 379–386 (2018) [CrossRef] [Google Scholar]
  • K. Oberleithner, M. Sieber, C.N. Nayeri et al., Three–dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction, J. Fluid Mech., 679, 383–414 (2011) [CrossRef] [Google Scholar]
  • R. Mullyadzhanov, S. Abdurakipov, K. Hanjalić, Helical structures in the near field of a turbulent pipe jet, Flow, Turbulence and Combust., 98(2), 367–388 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.