Open Access
BIO Web Conf.
Volume 33, 2021
The 1st International Conference of Advanced Veterinary Science and Technologies for Sustainable Development (ICAVESS 2021)
Article Number 07003
Number of page(s) 5
Section Zoonosis, Emerging Disease, and Transboundary Animal Disease
Published online 23 August 2021
  • M. Wille and C. Holmes. Wild birds as reservoirs for diverse and abundantgamma-and deltacoronaviruses. FEMS Microbiology Reviews, fuaa026, 44:631-644 (2020) [Google Scholar]
  • T. Piasecki, K. Chrzastek and A. Wieliczko. Detection and identification of Chlamydophila psittaci in asymptomatic parrots in Poland. Piasecki et al. BMC Veterinary Research, 8:233 (2012) [Google Scholar]
  • M. Richard, R. Fouchier, I. Monne, and T. Kuiken. Mechanism and risk factors for mutation from low to highly pathogenic avian influenza virus. EFSA supporting publication 2017: EN-1287. 26 pp. doi:10.2903/sp.efsa.2017.EN-1287 (2017) [Google Scholar]
  • H. Hu, K. Jung, Q. Wang, L.J. Saif, and A.N. Vlasova. Development of a one-step RT PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian fecal samples, Journal of Virological Methods (2010) [Google Scholar]
  • L.A. Sanches, M. Gomes da Silva, R.H.F. Teixeira, M.P.V. Cunha, M.G.X. Oliveira, M.A.M. Vieria, T.A.T. Gomes, and T. Knobl. Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC). Brazilian journal of microbiology, 48:760-763 (2017) [Google Scholar]
  • M.P. Stevens, T.J. Humphrey, and D.J. Maskell. Molecular insights into farmanimal and zoonotic Salmonella infectons. Phil. Trans. R. Soc. B., 364:2709-2723 (2009) [Google Scholar]
  • J. F. W. Chan, K. K. W. To, H. Chen, and K. Y. Yuen. Cross-species transmission and emergence of novel viruses from birds. Current opinion in virology, 10:63-69 [Google Scholar]
  • H. Gerlach. Chlamydia. In: Avian medicine: Principles and Application. HBD International Inc., Delray Beach, Florida. 984-996 (1999) [Google Scholar]
  • B. Sareyyupoglu, A. Celik Ok, Z. Cantekin, H. Yardimci, M. Akan, and A. Akcay. Polymerase Chain Reaction Detection of Salmonella spp. in Fecal Samples ofPetBirds. Avian Diseases, 52(1): 163-167 (2007) [Google Scholar]
  • T. Harkinezhad, T. Geens, and D. Vanrompany. Chlamydophila psittaci Infection in Birds: A Review with emphasis on zonotic consequences. Vet Microbiology 135 (1): 68-77 (2009) [Google Scholar]
  • G. Boseret, B. Losson, J.G. Mainil, G. Thiry, C. Saegerman. Zoonoses in pet birds: review and perspectives. Veterinary Research 2013, 44:36 (2013) [Google Scholar]
  • M. Krawiec, T. Piasecki, and A. Wieliczko. Prevalance of Chlamydia psittaci and other Chlamydia Species in Wild Birds in Poland. Vector Borne and Zoonotic Diseases Vol 15 No 11: 652-655 (2015) [Google Scholar]
  • C.V. Srikanth and B.J. Cherayll. Intestinal Innate Immunity and the Pathogenesis of Salmonella Enteritis. Immunol Res, 37(1):61-78 (2007) [Google Scholar]
  • D. M. Heithoff, W. R. Shimp, P. W. Lau, G. Badie, E. Y. Enioutina, R. A. Daynes, B. A. Byrne, J. K. House, and M. J. Mahan. Human Salmonella clinical isolates distinct from those of animal origin. Appl. Environ. Microbiol. 74, 1757–1766. (doi:10.1128/AEM.m02740-07) (2008) [Google Scholar]
  • I.S. Schrank, M.A.Z. Mores, J.L.A. Costa, A.P.G. Frazzon, R. Soncini, A. Schrank, M.H. Vainstein, and S.C. Silva. Influence of enrichment media and application ofaPCR based method to detect Salmonella in poultry industry products and clinical samples. Vet. Microbiol. 82:45-53 (2011) [Google Scholar]
  • I. Feder, J.C. Nietfeld, J. Galland, T. Yeary, J.M. Sargeant, R. Oberst, M.L. Tamplin, and J.B. Luchansky. Comparison of cultivation and PCR-hybridization for detectionof Salmonella in porcine fecal and water samples. J. Clin. Microbiol. 39:2477-2484 (2001) [Google Scholar]
  • S.D. Oliveira, L.R. Santos, D.M.T. Schuch, A.B. Silva, C.T.P. Salle, and C.W. Canal. Detection and identification of salmonellas frompoultry-related samples by PCR. Vet Microbiol. 82:45-53 (2002) [Google Scholar]
  • P. Whyte, K. McGill, J.D. Collins, and E. Gormley. The prevalence and PCR detection of Salmonella contamination in raw poultry. Vet. Microbiol. 89:53-60 (2002) [Google Scholar]
  • V.K. Sharma, and S.A. Carlson. Simultaneous detection of Salmonella strains and Eschericia coli O157:H7 with fluorogenic PCR and single-enrichment-broth culture. Appl. Environ. Microbiol. 66:5472-5476 (2000) [Google Scholar]
  • B. Malorny, J. Hoorfar, M. Hugas, A. Heuvelink, P. Fach, L. Ellerbroek, C. Bunge, C. Dorn, and R. Helmut. Inter laboratory diagnostic accuracy of a Salmonella specific PCRbased method. Int. J. Food Microbiol., 89: 241-249 (2003) [Google Scholar]
  • B. Lawson, E. Pinna, R.A. Horton, S.K. Macgregor, S.K. John, J. Chantrey, P.J. Duff, J.K. Kirkwood, V.R. Simpson, R.A. Robinson, J. Wain, A.A. Cunningham. Epidemiological Evidence That Garden Birds are a Source of Human Salmonellosis in England and Wales. Plos One 9 (2) (2014) [Google Scholar]
  • J.A. Afema and W.M. Sischo. Salmonella in Wild Birds Utilizing Protected andHuman Impacted Habitats, Uganda. EcoHealth 13:558-569 (2016) [Google Scholar]
  • I. Tizard. Salmonellosis in wild birds. Seminars in Avian and Exotic Pet Medicine, 13(2):50–66 (2004) [Google Scholar]
  • M. Krawiec, M. Kuczkowski, A.G. Kruszewicz, and A. Wieliczko. Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Veterinary Research 11:15 (2015) [Google Scholar]
  • F. Hilbert, F. J. M. Smulders, R. Chopra-Dewasthaly, and P. Paulsen, “Salmonellainthe wildlife-human interface, ” Food Research International, 45(2): 603–608 (2012) [Google Scholar]
  • M. Foti, D. Rinaldo, A. Guerci, C. Giacopello, A. Aleo, F. De Leo, et al. Pathogenic microorganisms carried by migratory birds passing through the territory oftheislandof Ustica, Sicily (Italy). Avian Pathol. 40:405–9. (2011) [Google Scholar]
  • C. M. H. Benskin, K. Wilson, K. Jones, and I. R. Hartley, “Bacterial pathogens in wild birds: a review of the frequency and effects of infection, ” Biological Reviews, 84(3):349–373 (2009) [Google Scholar]
  • C. A. R. M. Matias, Pereira I. A., Araujo M. Dos S., Santos A. F. M., Lopes R. P., Christakis S., Rodrigues D. Dos P., and Siciliano S. Characteristics of Salmonella spp. Isolated from Wild Birds Confiscated in Illegal Trade Markets, Rio de Janeiro, Brazil. BioMed Research International, 2016, Article ID 3416864, 7 pages. (2016) [Google Scholar]
  • B. A. Jones, D. Grace, R. Kock, S Alonso., J. Rushton, M. Y. Said, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA. 110:8399 404. doi: 10.1073/pnas.1208059110. (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.