Open Access
Issue
BIO Web Conf.
Volume 37, 2021
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2021)
Article Number 00151
Number of page(s) 7
DOI https://doi.org/10.1051/bioconf/20213700151
Published online 27 October 2021
  • S.S. Girsang, T.Q. Correa Jr, J.R. Quilty, P.B. Sanchez, R.J. Buresh, Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel, Soil and Tillage Res., 202, 104647 (2020), DOI: org/10.1016/j.still.2020.104647 [CrossRef] [Google Scholar]
  • G. Arbat, S. Cuff, M. Duran-Ros, J. Pinsach, J. Puig-Bargués, J. Pujol, F.R. de Cartagena, Modeling approaches for determining dripline depth and irrigation frequency of subsurface drip irrigated rice on different soil textures, Water (Switzerland), 12(6), 1724 (2020) [Google Scholar]
  • H. Chen, W. Zeng, Y. Jin, Y. Zha, B. Mi, S. Zhang, Development of a water logging analysis system for paddy fields in irrigation districts, J. of Hydrol., 591, 125325 (2020) [CrossRef] [Google Scholar]
  • S. Majumder, P. Banik, Inhibition of arsenic transport from soil to rice grain with a sustained field-scale aerobic rice cultural practice, J. of Envir. Manag., 279, 111620 (2021), DOI: org/10.1016/j.jenvman.2020.111620 [CrossRef] [Google Scholar]
  • M. Ishfaq, N. Akbar, Sh.A. Anjum, M. Anwar-Ijl-Haq, Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes, J. of Integrat. Agricult., 19(11), 2656–2673 (2020) [CrossRef] [Google Scholar]
  • Z. Chen, P. Li, S. Jiang, H. Chen, J. Wang, C. Cao, Evaluation of resource and energy utilization, environmental and economic benefits of rice watersaving irrigation technologies in a rice-wheat rotation system, Sci. of The Total Envir., 757, 143748 (2021) [CrossRef] [Google Scholar]
  • R. Joshia, B. Singh, A. Shukla, Evaluation of elite rice genotypes for physiological and yield attributes under aerobic and irrigated conditions in tarai areas of western Himalayan region, Current Plant Biol., 13, 45–52 (2018), DOI: org/10.1016/j.cpb.2018.05.001 [CrossRef] [Google Scholar]
  • M.A.B. Pinto, J.M.B. Parfitt, L.C. Timm, L.C. Faria, G. Concenço, L. Stumpf, B.G. Nörenberg, Sprinkler irrigation in lowland rice: Crop yield and its components as a function of water availability in different phenological phases, Field Crops Res., 248, 107714 (2020), DOI: org/10.1016/j.fcr.2020.107714 [CrossRef] [Google Scholar]
  • F. Monaco, G. Sali, How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data, Agricult. Water Manag., 195, 47–57 (2018) [CrossRef] [Google Scholar]
  • T. Safronova, S. Vladimirov, I. Prikhodko, A. Sergeyev, Optimization problem in mathematical modeling of technological processes of economic activity on rice irrigation systems, E3S Web of Conf., 210, 05014 (2020), DOI: org/10.1051/e3sconf/202021005014 [CrossRef] [EDP Sciences] [Google Scholar]
  • S. Vladimirov, T. Safronova, I. Prikhodko, A probabilistic model of the process of land reclamation management, Int. agricult. J., 62(4), 171–185 (2019), DOI: 10.24411/2588-0209-201910093 [Google Scholar]
  • D.P. Patel, A. Dasb, G.C. Munda, P.K. Ghosh, Ju.S. Bordoloi, M. Kumar, Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem, Agricult. Water Manag., 97(9), 1269–1276 (2010), DOI: org/10.1016/j.agwat.2010.02.018 [CrossRef] [Google Scholar]
  • A. Lopez-Pineiro, D. Pena, Ä. Albarrân, J. Sânchez-Llerena, D. Becerra, D. Fernândez, S. Gomez, Environmental fate of bensulfuron-methyl and MCPA in aerobic and anaerobic rice-cropping systems, J. of Envir. Manag., 237, 44–53 (2019), DOI: org/10.1016/j.jenvman.2019.02.058 [CrossRef] [Google Scholar]
  • P. Vijayaraghavareddy, Yi. Xinyou, P.C. Struik, U. Makarla, Sh. Sreeman, Responses of Lowland, Upland and Aerobic Rice Genotypes to Water Limitation During Different Phase, Rice Sci., 27(4), 345–354 (2020), DOI: org/10.1016/j.rsci.2020.05.009 [Google Scholar]
  • M.D.M. Kadiyala, J.W. Jones, R.S. Mylavarapu, Y.C. Li, M.D. Reddy, Identifying irrigation and nitrogen best management practices for aerobic ricemaize cropping system for semi-arid tropics using CERES-rice and maize models, Agricult. Water Manag., 149, 23–32 (2015), DOI: org/10.1016/j.agwat.2014.10.019 [CrossRef] [Google Scholar]
  • S.F. Islam, B.O. Sander, J.R. Quilty, A. Neergaard, Ja.W. Groenigen, L.S. Jensen, Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies, Sci. of The Total Envir., 739, 140215 (2020), DOI: org/10.1016/j.scitotenv.2020.140215 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.