Open Access
BIO Web Conf.
Volume 41, 2021
The 4th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2021)
Article Number 03005
Number of page(s) 3
Section Big Data for Public Health Policy
Published online 22 December 2021
  • X. Xie, L. Wang, A. Wang, Artificial neural network modelling for deciding if extraction are necessary prior to orthodontic treatment, J. Angle Orthod 80, 262-266 (2010) [Google Scholar]
  • R. Patcas, D. A. J. Bernini, A. Volokitin, E. Agustsson, R. Rothe, R. Timofte, Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age, Intl. J. of Oral Maxillofacial Surg 48, 1, 77–83 (2019) [Google Scholar]
  • Information on (2020) [Google Scholar]
  • C. Brown, Artificial Intelligence in Dentistry, Inside Dent. Tech 7, 10 (2019) [Google Scholar]
  • Information on (2020) [Google Scholar]
  • B. Majumdar, S.C. Saroda, G.S. Saroda, S. Patil, Technology: Artificial Intelligence, B.D.J 224, 9167 (2018). [Google Scholar]
  • F. Schwendicke, T. Golla, M. Dreher, J. Krois, Convolutional neural networks for dental image diagnostics: a scoping review, J. Dent. 91, 103226, (2019) [Google Scholar]
  • V. Zwass, Neural network, Encyclopedia Britannica, information on (2020) [Google Scholar]
  • R. Yamashita, M. Nishio, R.K.G. Do, Convolutional neural network : an overview and application in radiology. Insights Imag. 9, 611–629 (2018) doi:10.1007/s13244-018-0639-9 [Google Scholar]
  • H. T. Yau, L. S. Tsou & M. J. Tsai, Octree-based Virtual Dental Training System with a Haptic Device, Computer-Aided Des. App. 3:1-4, 415-424, (2006) DOI: 10.1080/16864360.2006.10738480 [Google Scholar]
  • T. Murray, Authoring intelligent tutoring system for visual classification problem solving. Art. Int. in Med 36, 85–117 (2006) [Google Scholar]
  • J.H. Lee, D.H. Kim, S.N. Jeong, S.H. Choi, Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm, J. Dent. 77, 106-111 (2018) [Google Scholar]
  • A.P. Bhatia, Artificial intelligence: an advancing front of dentistry. Acta Scientific Dent. Sci. 3, 135-138 (2019) [Google Scholar]
  • M.S. Baliga, Artificial intelligence-the next frontier in pediatric dentistry, J.Indian.Soc.Pedod.Prev.Dent 37, 315 (2019) [Google Scholar]
  • S.S. Khanna, P.A. Dhaimade, Artificial intelligence: transforming dentistry today. Indian J. Basic Applied Med. Res. 6, 161–167 (2017) [Google Scholar]
  • B. Majumdar, Technology: artificial intelligence, B.D.J 224, 916–917 (2018) [Google Scholar]
  • B. Alexander, J. Sunil, Artificial intelligence in dentistry current concepts and a peep into the future, Intl J. Advanced Res. 6, 12, 1105-1108 (2018) [Google Scholar]
  • D.P. Saemant, Stereolithhographic surgical templates for placement of dental implants in complaxes cases. Intl J. Periodontics and Restorative Denti. 23.3, 287-295 (2003) [Google Scholar]
  • M.S. Baliga, Artifcial intelligence The next frontier in pediatric dentistry, J Indian Soc Pedod Prev Dent 37, 315 (2019) [Google Scholar]
  • P. Hammond, J.C. Davenport, F.J. Fitzpatrick, Logic based constraints and design of dental prothesis, Art. Int. in Med 5, 431-446 (1993) [Google Scholar]
  • I. Susic, M. Travar, M. Susic, The application of cad/cam technology in dentistry, IOP Conf. Ser.: Mater. Sci. Eng. 200, 012020 (2017) [Google Scholar]
  • E.A. Medonce, Clinical decision support systems: perspectives in dentistry, J. Dent. Ed. 68, 589-597 (2014) [Google Scholar]
  • J.J. Hwang, An overview of deep learning in the field of dentistry. Imaging Science in Dentistry. 49, 1-7 (2019) [Google Scholar]
  • J. Bradley, Human-computer interaction and the growing role of social context. Bul. Am. Soc. Info. Sci. Tech. 24, 18-19 (1998) doi:10.1002/bult.85 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.