Open Access
BIO Web Conf.
Volume 49, 2022
The 3rd International Symposium on Global Physiology 2022 (ISGP 2022)
Article Number 01002
Number of page(s) 8
Section Animal Physiology
Published online 05 July 2022
  • WHO, World Health Organization. Report on the Global Tobacco Epidemic, 2008: The MPOWER Package, Who, pp. 1–342, 2008, [Online]. Available: Acessado 23.05.2017. [Google Scholar]
  • A. L. Smith, S. M. Carter, S. M. Dunlop, B. Freeman, and S. Chapman, The views and experiences of smokers who quit smoking unassisted. A systematic review of the qualitative evidence, PLoS One, vol. 10, no. 5, 2015, doi: 10.1371/journal.pone.0127144. [Google Scholar]
  • N. L. Benowitz, Nicotine Addiction, N. Engl. J. Med., vol. 362, no. 24, pp. 2295–2303, Jun. 2010, doi: 10.1056/NEJMra0809890. [CrossRef] [PubMed] [Google Scholar]
  • A. Markou, Neurobiology of nicotine dependence, Philos. Trans. R. Soc. B Biol. Sci., vol. 363, no. 1507, pp. 3159–3168, 2008, doi: 10.1098/rstb.2008.0095. [CrossRef] [PubMed] [Google Scholar]
  • H. D. Mansvelder and D. S. McGehee, Cellular and synaptic mechanisms of nicotine addiction, J. Neurobiol., vol. 53, no. 4, pp. 606–617, 2002, doi: 10.1002/neu.10148. [CrossRef] [PubMed] [Google Scholar]
  • M. W. Quick and R. A. J. Lester, Desensitization of neuronal nicotinic receptors, J. Neurobiol., vol. 53, no. 4, pp. 457–478, Dec. 2002, doi: 10.1002/neu.10109. [CrossRef] [PubMed] [Google Scholar]
  • E. X. Albuquerque, E. F. R. Pereira, M. Alkondon, and S. W. Rogers, Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function, Physiol. Rev., vol. 89, no. 1, pp. 73–120, Jan. 2009, doi: 10.1152/physrev.00015.2008. [CrossRef] [PubMed] [Google Scholar]
  • J. D. Berke and S. E. Hyman, Addiction, dopamine, and the molecular mechanisms of memory, Neuron, vol. 25, no. 3, pp. 515–532, 2000, doi: 10.1016/S0896-6273(00)81056-9. [CrossRef] [PubMed] [Google Scholar]
  • S. Shiffman, R. West, and D. Gilbert, Recommendation for the assessment of tobacco craving and withdrawal in smoking cessation trials, Nicotine Tob. Res., vol. 6, no. 4, pp. 599–614, Aug. 2004, doi: 10.1080/14622200410001734067. [CrossRef] [PubMed] [Google Scholar]
  • P. J. Kenny and A. Markou, Neurobiology of the nicotine withdrawal syndrome, Pharmacol. Biochem. Behav., vol. 70, no. 4, pp. 531–549, 2001, doi: 10.1016/S0091-3057(01)00651-7. [CrossRef] [Google Scholar]
  • J. W. Daly, Nicotinic agonists, antagonists, and modulators from natural sources, Cell. Mol. Neurobiol., vol. 25, no. 3–4, pp. 513–552, 2005, doi: 10.1007/s10571-005-3968-4. [CrossRef] [PubMed] [Google Scholar]
  • S. S. Watkins, George F. Koob, Athina, Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal, Nicotine Tob. Res., vol. 2, no. 1, pp. 19–37, Feb. 2000, doi: 10.1080/14622200050011277. [CrossRef] [PubMed] [Google Scholar]
  • A. J. Grottick et al., Evidence that nicotinic α7 receptors are not involved in the hyperlocomotor and rewarding effects of nicotine, J. Pharmacol. Exp. Ther., vol. 294, no. 3, pp. 1112–1119, 2000. [Google Scholar]
  • A. A. Walf and C. A. Frye, The use of the elevated plus maze as an assay of anxiety-related behavior in rodents, Nat. Protoc., vol. 2, no. 2, pp. 322–328, 2007, doi: 10.1038/nprot.2007.44. [CrossRef] [PubMed] [Google Scholar]
  • L. P. Dwoskin and P. A. Crooks, Competitive neuronal nicotinic receptor antagonists: A new direction for drug discovery, J. Pharmacol. Exp. Ther., vol. 298, no. 2, pp. 395–402, 2001. [Google Scholar]
  • T. Herlina, U. Supratman, U. M. S. Soedjanaatmadja, A. Subarnas, S. Sutardjo, and H. Hayashi, Biologically active natural products from Indonesian Erythrina plants, vol. 2008, no. October, pp. 204–207, 2008. [Google Scholar]
  • Y. Ohmura, I. Tsutsui-Kimura, and M. Yoshioka, Impulsive behavior and nicotinic acetylcholine receptors, J. Pharmacol. Sci., vol. 118, no. 4, pp. 413–422, 2012, doi: 10.1254/jphs.11R06CR. [CrossRef] [PubMed] [Google Scholar]
  • G. Pitchaiah, G. L. Viswanatha, R. Srinath, K. Nandakumar, D. Dayabaran, and E. J. Florance, Anxiolytic and anticonvulsant activity of aqueous extract of stem bark of Erythrina variegata in rodents, Int. J. PharmTech Res., vol. 2, no. 1, pp. 40–48, 2010. [Google Scholar]
  • A. T. Rafsanjani et al., The effect of nicotine administration on physical and psychological signs of withdrawal syndrome induced by single or frequent doses of morphine in rats, Basic Clin. Neurosci., vol. 3, no. 3, pp. 49–57, 2012. [Google Scholar]
  • L. E. O'Dell, A. W. Bruijnzeel, S. Ghozland, A. Markou, and G. F. Koob, Nicotine Withdrawal in Adolescent and Adult Rats, Ann. N. Y. Acad. Sci., vol. 1021, no. 1, pp. 167–174, Jun. 2004, doi: 10.1196/annals.1308.022. [CrossRef] [Google Scholar]
  • E. D. Levin, F. J. McClernon, and A. H. Rezvani, Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization, Psychopharmacology (Berl)., vol. 184, no. 3–4, pp. 523–539, 2006, doi: 10.1007/s00213-005-0164-7. [CrossRef] [PubMed] [Google Scholar]
  • A. Chiolero, D. Faeh, F. Paccaud, and J. Cornuz, Consequences of smoking for body weight, body fat distribution, and insulin resistance, Am. J. Clin. Nutr., vol. 87, no. 4, pp. 801–809, 2008, doi: 10.1093/ajcn/87.4.801. [CrossRef] [PubMed] [Google Scholar]
  • J. Reinholz, O. Skopp, C. Breitenstein, I. Bohr, H. Winterhoff, and S. Knecht, “Compensatory weight gain due to dopaminergic hypofunction: New evidence and own incidental observations,” Nutr. Metab., vol. 5, no. 1, pp. 1–4, 2008, doi: 10.1186/1743-7075-5-35. [CrossRef] [Google Scholar]
  • S. Pogun and A. C Collins, Oral Nicotine Self-Administration in Rodents, J. Addict. Res. Ther., vol. 01, no. S2, 2012, doi: 10.4172/2155-6105.s2-004. [CrossRef] [Google Scholar]
  • T. Nesil, L. Kanit, A. C. Collins, and S. Pogun, Individual differences in oral nicotine intake in rats, Neuropharmacology, vol. 61, no. 1–2, pp. 189–201, Jul. 2011, doi: 10.1016/j.neuropharm.2011.03.027. [CrossRef] [PubMed] [Google Scholar]
  • S. G. Matta et al., Guidelines on nicotine dose selection for in vivo research, Psychopharmacology (Berl)., vol. 190, no. 3, pp. 269–319, 2007, doi: 10.1007/s00213-006-0441-0. [CrossRef] [PubMed] [Google Scholar]
  • S. Ferrea and G. Winterer, Neuroprotective and Neurotoxic Effects of Nicotine, Pharmacopsychiatry, vol. 42, no. 06, pp. 255–265, Nov. 2009, doi: 10.1055/s-0029-1224138. [CrossRef] [PubMed] [Google Scholar]
  • J. Le Houezec, C. Martin, C. Cohen, and R. Molimard, Failure of behavioral dependence induction and oral nicotine bioavailability in rats, Physiol. Behav., vol. 45, no. 1, pp. 103–108, 1989, doi: 10.1016/0031-9384(89)90171-6. [CrossRef] [Google Scholar]
  • M. A. R. Serrano et al., Anxiolytic-like effects of erythrinian alkaloids from erythrina suberosa, Quim. Nova, vol. 34, no. 5, pp. 808–811, 2011. [Google Scholar]
  • R. Marcos, R. Garcia-Mateos, R. San, G. Kite, M. Martinez-Vazquez, and A. C., Erythrina, a Potential Source of Chemicals from the Neotropics, in Bioactive Compounds in Phytomedicine, InTech, 2012. [Google Scholar]
  • R. Marcos, R. Garcia-Mateos, R. San, G. Kite, M. Martinez-Vazquez, and A. C., Erythrina, a Potential Source of Chemicals from the Neotropics, Bioact. Compd. Phytomedicine, 2012, doi: 10.5772/26188. [Google Scholar]
  • Y. Tizabi et al., Antidepressant effects of nicotine in an animal model of depression, Psychopharmacology (Berl)., vol. 142, no. 2, pp. 193–199, Feb. 1999, doi: 10.1007/s002130050879. [CrossRef] [PubMed] [Google Scholar]
  • Y. Tizabi et al., Effects of nicotine on depressivelike behavior and hippocampal volume of female WKY rats, Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol. 34, no. 1, pp. 62–69, Feb. 2010, doi: 10.1016/j.pnpbp.2009.09.024. [CrossRef] [Google Scholar]
  • J. T. Andreasen, G. M. Olsen, O. Wiborg, and J. P. Redrobe, Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests, J. Psychopharmacol., vol. 23, no. 7, pp. 797–804, 2009, doi: 10.1177/0269881108091587. [CrossRef] [PubMed] [Google Scholar]
  • S. M. Anderson and D. H. Brunzell, Low Dose Nicotine and Antagonism of β2 Subunit Containing Nicotinic Acetylcholine Receptors Have Similar Effects on Affective Behavior in Mice, PLoS One, vol. 7, no. 11, pp. 1–11, 2012, doi: 10.1371/journal.pone.0048665. [Google Scholar]
  • M. R. Picciotto et al., Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine, Nature, vol. 391, no. 6663, pp. 173–177, 1998, doi: 10.1038/34413. [CrossRef] [PubMed] [Google Scholar]
  • R. Exley and S. J. Cragg, Presynaptic nicotinic receptors: A dynamic and diverse cholinergic filter of striatal dopamine neurotransmission, Br. J. Pharmacol., vol. 153, no. SUPPL. 1, pp. 283–297, 2008, doi: 10.1038/sj.bjp.0707510. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.