Open Access
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
Article Number 01001
Number of page(s) 4
Section Breakthrough Technologies
Published online 05 August 2022
  • Arocha Rosete Y, To H, Evans M, White K, Saleh M, Trueman C, et al. Assessing the Use of DNA Detection Platforms Combined With Passive Wind-Powered Spore Traps for Early Surveillance of Potato and Tomato Late Blight in Canada. Plant Dis. 2021: PDIS12202695RE. [Google Scholar]
  • Atkinson CT, Roy K, Granthon C.Economical environmental sampler designs for detecting airborne spread of fungi responsible for Rapid `Ōhi`a Death.; 2019. Available at: [Accessed October 2, 2020]. [Google Scholar]
  • Bradley E, Kantz H. Nonlinear time-series analysis revisited. Chaos. 2015; 25(9): 097610. [CrossRef] [PubMed] [Google Scholar]
  • Brischetto C, Bove F, Fedele G, Rossi V. A WeatherDriven Model for Predicting Infections of Grapevines by Sporangia of Plasmopara viticola. Front. Plant Sci. 2021; 12. Available at: [Accessed April 12, 2021]. [Google Scholar]
  • Brischetto C, Bove F, Languasco L, Rossi V. Can Spore Sampler Data Be Used to Predict Plasmopara viticola Infection in Vineyards? Front. Plant Sci. 2020; 11: 1187. [Google Scholar]
  • Caffi T, Rossi V, Bugiani R. Evaluation of a Warning System for Controlling Primary Infections of Grapevine Downy Mildew. Plant Disease. 2010; 94(6): 709–716. [CrossRef] [PubMed] [Google Scholar]
  • Caffi T, Gilardi G, Monchiero M, Rossi V. Production and Release of Asexual Sporangia in Plasmopara viticola. 10. [Google Scholar]
  • Carisse O, McCartney HA, Gagnon JA, Brodeur L. Quantification of Airborne Inoculum as an Aid in the Management of Leaf Blight of Onion Caused by Botrytis squamosa. Plant Disease. 2005; 89(7): 726–733. [CrossRef] [PubMed] [Google Scholar]
  • Carisse O, McRoberts N, Brodeur L. Comparison of monitoringand weather-based risk indicators of botrytis leaf blight of onion and determination of action thresholds. Canadian Journal of Plant Pathology. 2008; 30(3): 442–456. [CrossRef] [Google Scholar]
  • Carisse O, Van der Heyden H, Tremblay M, Hébert PO, Delmotte F. Evidence for differences in the temporal progress of Plasmopara viticola clades riparia and aestivalis airborne inoculum monitored in vineyards in eastern Canada using a specific multiplex qPCR assay. Plant Disease. 2020. Available at: [Accessed December 9, 2020]. [Google Scholar]
  • Choudhury RA, McRoberts N. Characterization of Pathogen Airborne Inoculum Density by Information Theoretic Analysis of Spore Trap Time Series Data. Entropy. 2020; 22(12): 1343. [CrossRef] [Google Scholar]
  • Cortiñas Rodríguez JA, González-Fernández E, Fernández-González M, Vázquez-Ruiz RA, Aira MJ. Fungal Diseases in Two North-West Spain Vineyards: Relationship with Meteorological Conditions and Predictive Aerobiological Model. Agronomy. 2020; 10(2): 219. [CrossRef] [Google Scholar]
  • Delière L, Cartolaro P, Léger B, Naud O. Field evaluation of an expertise-based formal decision system for fungicide management of grapevine downy and powdery mildews. Pest Manag Sci. 2015; 71(9): 1247–1257. [CrossRef] [Google Scholar]
  • Duillet A, Laurent B, Beslay J, Raynal M, Delmotte F. LAMP assay allows in-field quantitative assessment of Plasmopara viticola airborne inoculum. Journal of Applied Microbiology. Submitted. [Google Scholar]
  • Hirst JM. Bioaerosols: Introduction, Retrospect and Prospect. In: Bioaerosols Handbook. CRC Press; 1995. [Google Scholar]
  • Kaczmarek AM, King KM, West JS, Stevens M, Sparkes D, Dickinson MJ. A Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Specific Detection of Airborne Inoculum of Uromyces betae (Sugar Beet Rust). Plant Disease. 2019; 103(3): 417–421. [CrossRef] [PubMed] [Google Scholar]
  • Kennelly MM, Gadoury DM, Wilcox WF, Magarey PA, Seem RC. Primary Infection, Lesion Productivity, and Survival of Sporangia in the Grapevine Downy Mildew Pathogen Plasmopara viticola. Phytopathology®. 2007; 97(4): 512–522. [CrossRef] [PubMed] [Google Scholar]
  • King KM, Eyres GJ, West J, Siraf C, Matusinsky P, Palicova J, et al. Novel Multiplex and Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid Species and Mating-Type Identification of Oculimacula acuformis and O. yallundae (Causal Agents of Cereal Eyespot), and Application for Detection of Ascospore Dispersal and in planta Use. Phytopathology®. 2020: PHYTO-04-20-0116-R. [Google Scholar]
  • Kong X, Qin W, Huang X, Kong F, Schoen CD, Feng J, et al. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola. Sci Rep. 2016; 6: 28935. [CrossRef] [PubMed] [Google Scholar]
  • McCartney HA, Fitt BDL, Schmechel D. Sampling bioaerosols in plant pathology. Journal of Aerosol Science. 1997; 28(3): 349–364. [CrossRef] [Google Scholar]
  • Mouafo-Tchinda RA, Beaulieu C, Fall ML, Carisse O. Effect of temperature on aggressiveness of Plasmopara viticola f. sp. aestivalis and P. viticola f. sp. riparia from eastern Canada. Canadian Journal of Plant Pathology. 2021; 43(1): 73–87. [CrossRef] [Google Scholar]
  • Notomi T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000; 28(12): 63e–663. [CrossRef] [Google Scholar]
  • Pizolotto CA, Harrington M, Brown L, Murdock M, Harrington S, Marshall J, et al. A real-time PCR assay for Erysiphe betae and its effectiveness when used with different spore trapping methods. Eur J Plant Pathol. 2021. Available at: [Accessed December 8, 2021]. [PubMed] [Google Scholar]
  • Ristaino JB, Saville AC, Paul R, Cooper DC, Wei Q. Detection of Phytophthora infestans by Loop-Mediated Isothermal Amplification, Real-Time LAMP, and Droplet Digital PCR. PLANT DIS. 2020; 104(3): 708–716. [CrossRef] [PubMed] [Google Scholar]
  • Rossi V, Caffi T. Effect of water on germination of Plasmopara viticola oospores. Plant Pathology. 2007; 56(6): 957–966. [CrossRef] [Google Scholar]
  • Rossi V, Caffi T, Bugiani R, Spanna F, Valle DD. Estimating the germination dynamics of Plasmopara viticola oospores using hydro-thermal time. Plant Pathology. 2008; 57(2): 216–226. [CrossRef] [Google Scholar]
  • Rossi V, Caffi T. The Role of Rain in Dispersal of the Primary Inoculum of Plasmopara viticola. Phytopathology®. 2011; 102(2): 158–165. [Google Scholar]
  • Rossi V, Caffi T, Giosuè S, Bugiani R. A mechanistic model simulating primary infections of downy mildew in grapevine. Ecological Modelling. 2008; 212(3–4): 480–491. [CrossRef] [Google Scholar]
  • Rossi V, Giosuè S, Caffi T. Modelling the dynamics of infections caused by sexual and asexual spores during Plasmopara Viticola epidemics. Journal of Plant Pathology. 2009; 91: 615–627. [Google Scholar]
  • Rouzet J, Jacquin D. Development of overwintering oospores of Plasmopara viticola and severity of primary foci in relation to climate*. EPPO Bulletin. 2003; 33(3): 437–442. [CrossRef] [Google Scholar]
  • Rumbolz J, Wirtz S, Kassemeyer H-H, Guggenheim R, Schäfer E, Büche C. Sporulation of Plasmopara viticola: Differentiation and Light Regulation. Plant Biology. 2002; 4(3): 413–422. [CrossRef] [Google Scholar]
  • Simonovici M. Enquête Pratiques phytosanitaires en viticulture en 2016. : 50. [Google Scholar]
  • Thiessen LD, Neill TM, Mahaffee WF. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator. PeerJ. 2018; 6: e4639. [CrossRef] [PubMed] [Google Scholar]
  • Torfs S, Van Poucke K, Van Campenhout J, Ceustermans A, Croes S, Bylemans D, et al. Venturia inaequalis trapped: molecular quantification of airborne inoculum using volumetric and rotating arm samplers. Eur J Plant Pathol. 2019; 155(4): 1319–1332. [CrossRef] [Google Scholar]
  • Tran Manh Sung C, Strizyk S, Clerjeau M. Simulation of the date of maturity of Plasmopara viticola oospores to predict the severity of primary infections in grapevine. Plant Disease. 1990; 74(2): 120–124. [CrossRef] [Google Scholar]
  • Urruty N, Deveaud T, Guyomard H, Boiffin J. Impacts of agricultural land use changes on pesticide use in French agriculture. European Journal of Agronomy. 2016; 80: 113–123. [CrossRef] [Google Scholar]
  • Valsesia G, Gobbin D, Patocchi A, Vecchione A, Pertot I, Gessler C. Development of a High-Throughput Method for Quantification of Plasmopara viticola DNA in Grapevine Leaves by Means of Quantitative Real-Time Polymerase Chain Reaction. Phytopathology®. 2005; 95(6): 672–678. [CrossRef] [PubMed] [Google Scholar]
  • Van der Heyden H, Dutilleul P, Charron J-B, Bilodeau GJ, Carisse O. Monitoring airborne inoculum for improved plant disease management. A review. Agron. Sustain. Dev. 2021; 41(3): 40. [CrossRef] [Google Scholar]
  • Williams MG, Magarey PA, Sivasithamparam K. Effect of temperature and light intensity on early infection behaviour of a Western Australian isolate of Plasmopara viticola, the downy mildew pathogen of grapevine. Australasian Plant Pathology. 2007; 36(4): 325–331. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.