Open Access
Issue |
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 6 | |
Section | Genetic and Breeding | |
DOI | https://doi.org/10.1051/bioconf/20225002010 | |
Published online | 05 August 2022 |
- Agurto M., Schlechter R. O., Armijo G., Solano E., Serrano C., Contreras R. A., Zúñiga G. E., and ArceJohnson P. 2017. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator). Frontiersin Plant Science, 8:758. https://doi.org/10.3389/fpls.2017.00758 [Google Scholar]
- Blanc S., Wiedemann-Merdinoglu S., Dumas V., Mestre P. and Merdinoglu D. 2012. A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theoretical and Applied Genetics, 125 (8), 1663–1675. https://doi.org/10.1007/s00122-012-1942-3 [CrossRef] [PubMed] [Google Scholar]
- Broman K. W., Wu H., Sen S. and Churchill G. A. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19 (7), 889–890. https://doi.org/10.1093/bioinformatics/btg112 [CrossRef] [PubMed] [Google Scholar]
- Canaguier A., Grimplet J., Di Gaspero G., Scalabrin S., Duchêne E., Choisne N., Mohellibi N., Guichard C., Rombauts S., Le Clainche I., Bérard A., Chauveau A., Bounon R., Rustenholz C., Morgante M., Le Paslier M. C., Brunel D. and Adam-Blondon A. F. 2017. A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data, 14. https://doi.org/10.1016/j.gdata.2017.09.002 [Google Scholar]
- Catchen J., Hohenlohe P. A., Bassham S., Amores A. and Cresko W. A. 2013. Stacks: An analysis tool set for population genomics. Molecular Ecology, 22 (11), 3124–3140. https://doi.org/10.1111/mec.12354 [CrossRef] [PubMed] [Google Scholar]
- De Nardi B., Santellani F., Possamai T. and Velasco R. 2019. Breeding for mildew resistance in grapevine to improve environmental and socio-economic sustainability in hotspot areas of Veneto. Acta Horticulturae, 1248, 313–318. https://doi.org/10.17660/ActaHortic.2019.1248.45 [CrossRef] [Google Scholar]
- Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S. and Mitchell S. E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6 (5): e19379. https://doi.org/10.1371/journal.pone.0019379 [CrossRef] [PubMed] [Google Scholar]
- Failla O., Toffolatti S., Maddalena G., De Lorenzis G., Hvarleva T., Di Gaspero G., Wiedemann-Merdinoglu S., Hausmann L. and Töpfer R. 2016. Screening for new sources of powdery and downy mildew resistance. In Innovine Final International Symposium Book of abstracts, Toulouse, France, 16-17 November. [Google Scholar]
- Feechan A., Kabbara S. and Dry I. 2011. Mechanisms of powdery mildew resistance in the Vitaceae family. Molecular Plant Pathology, 12 (3), 263–274. https://doi.org/10.1111/j.1364-3703.2010.00668.x [CrossRef] [PubMed] [Google Scholar]
- Grattapaglia D. and Sederoff R. 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics, 137 (4), 1121–1137. [CrossRef] [PubMed] [Google Scholar]
- Hoffmann S., Di Gaspero G., Kovács L., Howard S., Kiss E., Galbács Z., Testolin R. and Kozma P. 2008. Resistance to Erysiphe necator in the grapevine «Kishmish vatkana» is controlled by a single locus through restriction of hyphal growth. Theoretical and Applied Genetics, 116, 427–438. https://doi.org/10.1007/s00122-007-0680-4 [CrossRef] [PubMed] [Google Scholar]
- Jeger M. J. and Viljanen-Rollinson S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102, 32-40. https://doi.org/10.1007/s001220051615 [CrossRef] [Google Scholar]
- Lozano-Isla F. 2021. inti: Tools and Statistical https://doi.org/10.1007/s10658-011-9922-z [Google Scholar]
- Niks R. E. and Rubiales D. 2002. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 124 (2), 201–216. https://doi.org/10.1023/A:1015634617334 [CrossRef] [Google Scholar]
- OIV. (2009). Descriptor list for grape varieties and Vitis species, 2nd ed. http://www.ov.org [Google Scholar]
- Pap D., Riaz S., Dry I., Jermakow A., Tenscher A. C., Cantu D., Oláh R. and Walker M. A. 2016. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biology, 16 (1). https://doi.org/10.1186/s12870-016-0855-8 [Google Scholar]
- Pauquet J., Bouquet A., This P. and Adam-Blondon A.-F. 2001. Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theoretical and Applied Genetics, 103 (8), 1201–1210. https://doi.org/10.1007/s001220100664 [CrossRef] [Google Scholar]
- Possamai T., Wiedemann-Merdinoglu S., Merdinoglu D., Migliaro D., De Mori G., Cipriani G., Velasco R. and Testolin R. 2021. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC Plant Biology 21, 528 (2021). https://doi.org/10.1186/s12870-021-03174-4 [CrossRef] [PubMed] [Google Scholar]
- Qiu W., Feechan A. and Dry I. 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research, 2 (1), 15020. https://doi.org/10.1038/hortres.2015.20 [CrossRef] [PubMed] [Google Scholar]
- R Core Team. (2017). R: A language and environment for statistical computing. http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
- Riaz S., Menéndez C. M., Tenscher A., Pap D. and Walker M. A. 2020. Genetic mapping and survey of powdery mildew resistance in the wild Central Asian ancestor of cultivated grapevines in Central Asia. Horticulture Research, 7 (1), 104. https://doi.org/10.1038/s41438-020-0335-z [CrossRef] [PubMed] [Google Scholar]
- Sargolzaei M., Maddalena G., Bitsadze N., Maghradze D., Bianco P. A., Failla O., Toffolatti S. L. and De Lorenzis, G. 2020. Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated with Resistance to Plasmopara viticola in Vitis vinifera. Frontiersin Plant Science, 11, 562432. https://doi.org/10.3389/fpls.2020.562432 [CrossRef] [Google Scholar]
- Schnee S., Viret O. and Gindro K. 2008. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiological and Molecular Plant Pathology, 72 (4–6), 128–133. https://doi.org/10.1016/j.pmpp.2008.07.002 [CrossRef] [Google Scholar]
- Taylor J. and Butler D. 2017. R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. Journal of Statistical Software, 79 (6). https://doi.org/10.18637/jss.v079.i06 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.