Open Access
Issue |
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 5 | |
Section | Disease Management (Organic and IPM) | |
DOI | https://doi.org/10.1051/bioconf/20225003001 | |
Published online | 05 August 2022 |
- Agati, G., Zerovic, Z. G., Dalla Marta, A., di Stefano, V., Pinelli, P., Traversi, M. L., & Orlandini, S. (2008). Optically-assessed preformed flavonoids and susceptibility of grapevine to Plasmopara viticola under different light regimes. Functional Plant Biology, 35, 77-84. https://doi.org/10.1071/FP07178 [CrossRef] [PubMed] [Google Scholar]
- Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212-213, 29-37. https://doi.org/10.1016/j.micres.2018.04.008 [CrossRef] [PubMed] [Google Scholar]
- Almagro, L., Carbonell-Bejerano, P., Belchí-Navarro, S., Bru, R., Martínez-Zapater, J. M., Lijavetzky, D., & Pedreño, M. A. (2014). Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells. PLoS ONE, 9(10), e109777. https://doi.org/10.1371/journal.pone.0109777 [CrossRef] [PubMed] [Google Scholar]
- Alonso-Villaverde, V., Voinesco, F., Viret, O., Spring, J.-L., & Gindro, K. (2011). The effectiveness of stilbenes in resistant Vitaceae: Ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiology and Biochemistry, 49(3), 265-274. https://doi.org/10.1016/j.plaphy.2010.12.010 [CrossRef] [PubMed] [Google Scholar]
- Antico, C. J., Colon, C., Banks, T., & Ramonell, K. M. (2012). Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Frontiers in Biology, 7(1), 48-56. https://doi.org/10.1007/s11515-011-1171-1 [CrossRef] [Google Scholar]
- Aziz, A., Gauthier, A., Bezier, A., Poinssot, B., Joubert, J.-M., Pugin, A., Heyraud, A., & Baillieul, F. (2007). Elicitor and resistance-inducing activities of -1,4 cellodextrins in grapevine, comparison with -1,3 glucans and -1,4 oligogalacturonides. Journal of Experimental Botany, 58(6), 1463-1472. https://doi.org/10.1093/jxb/erm008 [CrossRef] [PubMed] [Google Scholar]
- Aziz, A., Heyraud, A., & Lambert, B. (2004). Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta, 218(5), 767-774. https://doi.org/10.1007/s00425-003-1153-x [CrossRef] [PubMed] [Google Scholar]
- Bodin, E., Bellée, A., Dufour, M.-C., André, O., & Corio-Costet, M.-F. (2020). Grapevine Stimulation: A Multidisciplinary Approach to Investigate the Effects of Biostimulants and a Plant Defense Stimulator. Journal of Agricultural and Food Chemistry, 68(51), 15085-15096. https://doi.org/10.1021/acs.jafc.0c05849 [CrossRef] [PubMed] [Google Scholar]
- Burdziej, A., Bellée, A., Bodin, E., Valls Fonayet, J., Magnin, N., Szakiel, A., Richard, T., Cluzet, S., & Corio-Costet, M.-F. (2021). Three Types of Elicitors Induce Grapevine Resistance against Downy Mildew via Common and Specific Immune Responses. Journal of Agricultural and Food Chemistry, 69(6), 1781-1795. https://doi.org/10.1021/acs.jafc.0c06103 [CrossRef] [PubMed] [Google Scholar]
- Claverie, J., Balacey, S., Lemaître-Guillier, C., Brulé, D., Chiltz, A., Granet, L., Noirot, E., Daire, X., Darblade, B., Héloir, M.-C., & Poinssot, B. (2018). The Cell Wall-Derived Xyloglucan Is a New DAMP Triggering Plant Immunity in Vitis vinifera and Arabidopsis thaliana. Frontiers in Plant Science, 9, 1725. https://doi.org/10.3389/fpls.2018.01725 [CrossRef] [PubMed] [Google Scholar]
- Corio-Costet, M. F. (2012). Fungicide resistance in Plasmopara viticola in France and anti-resistance measures. En T. S. Thind (Ed.), Fungicide resistance in crop protection: Risk and management (pp. 157-171). CABI. https://doi.org/10.1079/9781845939052.0157 [CrossRef] [Google Scholar]
- Dai, G. H., Andary, C., Mondolot-Cosson, L., & Boubals, D. (1995). Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola. Physiological and Molecular Plant pathology, 46(3), 177-188. https://doi.org/10.1006/pmpp.1995.1014 [CrossRef] [Google Scholar]
- De Bruyne, L., Höfte, M., & De Vleesschauwer, D. (2014). Connecting Growth and Defense: The Emerging Roles of Brassinosteroids and Gibberellins in Plant Innate Immunity. Molecular Plant, 7(6), 943-959. https://doi.org/10.1093/mp/ssu050 [CrossRef] [PubMed] [Google Scholar]
- Dufour, M.-C., Magnin, N., Dumas, B., Vergnes, S., & Corio-Costet, M.-F. (2016). High-throughput geneexpression quantification of grapevine defense responses in the field using microfluidic dynamic arrays. BMC Genomics, 17(1), 957. https://doi.org/10.1186/s12864-016-3304-z [CrossRef] [PubMed] [Google Scholar]
- Encinas-Villarejo, S., Maldonado, A. M., Amil-Ruiz, F., de los Santos, B., Romero, F., Pliego-Alfaro, F., Muñoz-Blanco, J., & Caballero, J. L. (2009). Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. Journal of Experimental Botany, 60(11), 3043-3065. https://doi.org/10.1093/jxb/erp152 [CrossRef] [PubMed] [Google Scholar]
- Enoki, S., & Suzuki, S. (2016). Pathogenesis-Related Proteins in Grape. En A. Morata & I. Loira (Eds.), Grape and Wine Biotechnology. InTech. https://doi.org/10.5772/64873 [Google Scholar]
- European Commission. (2009). Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union, 309(1), 1-50. [Google Scholar]
- Gabaston, J., Cantos-Villar, E., Biais, B., Waffo-Teguo, P., Renouf, E., Corio-Costet, M.-F., Richard, T., & Mérillon, J.-M. (2017). Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara Viticola. Journalof Agricultural and Food Chemistry, 65(13), 2711-2718. https://doi.org/10.1021/acs.jafc.7b00241 [CrossRef] [PubMed] [Google Scholar]
- Garde-Cerdán, T., Mancini, V., Carrasco-Quiroz, M., Servili, A., Gutiérrez-Gamboa, G., Foglia, R., PérezÁlvarez, E. P., & Romanazzi, G. (2017). Chitosan and Laminarin as Alternatives to Copper for Plasmopara viticola Control: Effect on Grape Amino Acid. Journal of Agricultural and Food Chemistry, 65(34), 73797386. https://doi.org/10.1021/acs.jafc.7b02352 [CrossRef] [PubMed] [Google Scholar]
- Giannakis, C., Bucheli, C. S., Skene, K. G. M., Robinson, S. P., & Scott, N. S. (1998). Chitinase and β1,3-glucanase in grapevine leaves: A possible defence against powdery mildew infection. Australian Journal of Grape and Wine Research, 4(1), 14-22. https://doi.org/10.1111/j.1755-0238.1998.tb00130.x [CrossRef] [Google Scholar]
- Guerreiro, A., Figueiredo, J., Sousa Silva, M., & Figueiredo, A. (2016). Linking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00565 [CrossRef] [PubMed] [Google Scholar]
- Harm, A., Kassemeyer, H.-H., Seibicke, T., & Regner, F. (2011). Evaluation of Chemical and Natural Resistance Inducers against Downy Mildew (Plasmopara viticola) in Grapevine. American Journal of Enology and Viticulture, 62(2), 184-192. https://doi.org/10.5344/ajev.2011.09054 [CrossRef] [Google Scholar]
- Heil, M., Ibarra-Laclette, E., Adame-Álvarez, R. M., Martínez, O., Ramirez-Chávez, E., Molina-Torres, J., & Herrera-Estrella, L. (2012). How Plants Sense Wounds: Damaged-Self Recognition Is Based on Plant-Derived Elicitors and Induces Octadecanoid Signaling. PLoS ONE, 7(2), e30537. https://doi.org/10.1371/journal.pone.0030537 [CrossRef] [PubMed] [Google Scholar]
- Krzyzaniak, Y., Trouvelot, S., Negrel, J., Cluzet, S., Valls, J., Richard, T., Bougaud, A., Jacquens, L., Klinguer, A., Chiltz, A., Adrian, M., & Héloir, M.-C. (2018). A Plant Extract Acts Both as a Resistance Inducer and an Oomycide Against Grapevine Downy Mildew. Frontiers in Plant Science, 9, 1085. https://doi.org/10.3389/fpls.2018.01085 [CrossRef] [PubMed] [Google Scholar]
- La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M., & Heitz, T. (2004). Metabolic reprogramming in plant innate immunity: The contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 198(1), 267-284. https://doi.org/10.1111/j.0105-2896.2004.0129.x [CrossRef] [PubMed] [Google Scholar]
- La Torre, A., Righi, L., Iovino, V., & Battaglia, V. (2019). Evaluation of copper alternative products to control grape downy mildew in organic farming. Journal of Plant Pathology, 101(4), 1005-1012. https://doi.org/10.1007/s42161-019-00330-6 [CrossRef] [Google Scholar]
- Langa-Lomba, N., Buzón-Durán, L., Martín-Ramos, P., Casanova-Gascón, J., Martín-Gil, J., SánchezHernández, E., & González-García, V. (2021). Assessment of Conjugate Complexes of Chitosan and Urtica dioica or Equisetum arvense Extracts for the Control of Grapevine Trunk Pathogens. Agronomy, 11(5), 976. https://doi.org/10.3390/agronomy11050976 [CrossRef] [Google Scholar]
- Latouche, G., Bellow, S., Poutaraud, A., Meyer, S., & Cerovic, Z. G. (2013). Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection by Plasmopara viticola. Planta, 237(1), 351-361. https://doi.org/10.1007/s00425-012-1776-x [CrossRef] [PubMed] [Google Scholar]
- Marchive, C., Léon, C., Kappel, C., Coutos-Thévenot, P., Corio-Costet, M.-F., Delrot, S., & Lauvergeat, V. (2013). Over-Expression of VvWRKY1 in Grapevines Induces Expression of Jasmonic Acid Pathway-Related Genes and Confers Higher Tolerance to the Downy Mildew. PLoS ONE, 8(1), e54185. https://doi.org/10.1371/journal.pone.0054185 [Google Scholar]
- Marchive, C., Mzid, R., Deluc, L., Barrieu, F., Pirrello, J., Gauthier, A., Corio-Costet, M.-F., Regad, F., Cailleteau, B., Hamdi, S., & Lauvergeat, V. (2007). Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal of Experimental Botany, 58(8), 19992010. https://doi.org/10.1093/jxb/erm062 [CrossRef] [PubMed] [Google Scholar]
- Menke, F. L. H., Kang, H.-G., Chen, Z., Park, J. M., Kumar, D., & Klessig, D. F. (2005). Tobacco Transcription Factor WRKY1 Is Phosphorylated by the MAP Kinase SIPK and Mediates HR-Like Cell Death in Tobacco. Molecular Plant-Microbe Interactions®, 18(10), 1027-1034. https://doi.org/10.1094/MPMI-181027 [CrossRef] [PubMed] [Google Scholar]
- Mondolot-Cosson, L., Andary, C., Dai, G.-H., & Roussel, J.-L. (1997). Histolocalisation de substances phénoliques intervenant lors d’interactions plantepathogène chez le tournesol et la vigne. Acta Botanica Gallica, 144(3), 353-362. https://doi.org/10.1080/12538078.1997.10515380 [Google Scholar]
- Pearce, G., Yamaguchi, Y., Barona, G., & Ryan, C. A. (2010). A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defenserelated genes. Proceedings of the National Academy of Sciences, 107(33), 14921-14925. https://doi.org/10.1073/pnas.1007568107 [Google Scholar]
- Pezet, R., Gindro, K., Viret, O., & Richter, H. (2004). Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis, 43(2), 145-148. [Google Scholar]
- Yamaguchi, Y., Barona, G., Ryan, C. A., & Pearce, G. (2011). GmPep914, an Eight-Amino Acid Peptide Isolated from Soybean Leaves, Activates DefenseRelated Genes. Plant Physiology, 156(2), 932-942. https://doi.org/10.1104/pp.111.173096 [CrossRef] [PubMed] [Google Scholar]
- Zhang, X., & Mou, Z. (2009). Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. The Plant Journal, 57(2), 302-312. https://doi.org/10.1111/j.1365313X.2008.03687.x [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.