Open Access
Issue |
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 4 | |
Section | Disease Management (Organic and IPM) | |
DOI | https://doi.org/10.1051/bioconf/20225003003 | |
Published online | 05 August 2022 |
- Abbott W. S. (1925). A method of computing the effectiveness of an insecticide. J. econ. Entomol, 18(2): 265-267. [CrossRef] [Google Scholar]
- Aziz A., Poinssot B., Daire X., Adrian M., Bézier A., Lambert B., Joubert J.-M. and Pugin A. (2003). Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular plant-microbe interactions, 16(12): 1118-1128. [CrossRef] [PubMed] [Google Scholar]
- Aziz A., Trotel-Aziz P., Dhuicq L., Jeandet P., Couderchet M. and Vernet G. (2006). Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology, 96(11): 1188-1194. [CrossRef] [PubMed] [Google Scholar]
- Bleyer G., Lösch F., Schumacher S. and Fuchs R. (2020). Together for the Better: Improvement of a Model Based Strategy for Grapevine Downy Mildew Control by Addition of Potassium Phosphonates. Plants, 9(6): 710. [CrossRef] [Google Scholar]
- Brischetto C., Bove F., Fedele G. and Rossi V. (2021). A Weather-Driven Model for Predicting Infections of Grapevines by Sporangia of Plasmopara viticola. Frontiersin plant science, 12: 317. [Google Scholar]
- Caffi T. and Rossi V. (2018). Fungicide models are key components of multiple modelling approaches for decision-making in crop protection. Phytopathologia Mediterranea, 57(1): 153-169. [Google Scholar]
- Caffi T., Rossi V. and Bugiani R. (2010). Evaluation of a warning system for controlling primary infections of grapevine downy mildew. Plant disease, 94(6): 709-716. [CrossRef] [PubMed] [Google Scholar]
- Delaunois B., Farace G., Jeandet P., Clément C., Baillieul F., Dorey S. and Cordelier S. (2014). Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environmental Science and Pollution Research, 21(7): 4837-4846. [CrossRef] [PubMed] [Google Scholar]
- Gessler C., Pertot I. and Perazzolli M. (2011). Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea, 50(1): 3-44. [Google Scholar]
- Gutiérrez‐Gamboa G., Romanazzi G., Garde‐Cerdán T. and Pérez‐Álvarez E. P. (2019). A review of the use of biostimulants in the vineyard for improved grape and wine quality: effects on prevention of grapevine diseases. Journal of the Science of Food and Agriculture, 99(3): 1001-1009. [CrossRef] [PubMed] [Google Scholar]
- Héloir M.-C., Adrian M., Brulé D., Claverie J., Cordelier S., Daire X., Dorey S., Gauthier A., Lemaître-Guillier C. and Negrel J. (2019). Recognition of elicitors in grapevine: from MAMP and DAMP perception to induced resistance. Frontiers in plant science, 10: 1117. [CrossRef] [PubMed] [Google Scholar]
- Lim S., Borza T., Peters R. D., Coffin R. H., AlMughrabi K. I., Pinto D. M. and Wang-Pruski G. (2013). Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. Journalof proteomics, 93: 207-223. [CrossRef] [Google Scholar]
- López M. A., Bannenberg G. and Castresana C. (2008). Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Current opinion in plant biology, 11(4): 420-427. [CrossRef] [PubMed] [Google Scholar]
- Lorenz D., Eichhorn K., Bleiholder H., Klose R., Meier U. and Weber E. (1995). Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1(2): 100-103. [CrossRef] [Google Scholar]
- Madden L., Hughes G. and Bosch F. (2007). Van den, B. The Study of Plant Disease Epidemics: APS Press: Minnesota, MN, USA. [Google Scholar]
- Mohamed N., Lherminier J., Farmer M.-J., Fromentin J., Béno N., Houot V., Milat M.-L. and Blein J.-P. (2007). Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology, 97(5): 611-620. [CrossRef] [PubMed] [Google Scholar]
- Pujos P., Martin A., Farabullini F. and Pizzi M. (2014). RomeoTM, cerevisane-based biofungicide against the main diseases of grape and of other crops: general description. Atti, Giornate Fitopatologiche, Chianciano Terme (Siena), 18-21 marzo 2014, Volume secondo: 51-56. [Google Scholar]
- Romanazzi G., Mancini V., Feliziani E., Servili A., Endeshaw S. and Neri D. (2016). Impact of alternative fungicides on grape downy mildew control and vine growth and development. Plant disease, 100(4): 739-748. [CrossRef] [PubMed] [Google Scholar]
- Rossi V., Salinari F., Poni S., Caffi T. and Bettati T. (2014). Addressing the implementation problem in agricultural decision support systems: the example of vite. net®. Computers and Electronics in Agriculture, 100: 88-99. [CrossRef] [Google Scholar]
- van Aubel G., Buonatesta R. and Van Cutsem P. (2014). COS-OGA: a novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Protection, 65: 129-137. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.