Open Access
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
Article Number 03014
Number of page(s) 4
Section Disease Management (Organic and IPM)
Published online 05 August 2022
  • Caffi, T., Legler, S. E., Rossi, V., and Bugiani, R. 2012. Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Dis. 96:104–110. [CrossRef] [PubMed] [Google Scholar]
  • Carisse, O., Bacon, R. & Lefebvre, A. 2009. Grape powdery mildew (Erysiphe necator) risk assessment based on airborne conidium concentration. Crop Protection. 28:1036–1044. [CrossRef] [Google Scholar]
  • Falacy, J. S., Grove, G. G., Mahaffee, W. F., Galloway, H., Glawe, D. A., Larsen, R. C., and Vandemark, G. J. 2007. Detection of Erysiphe necator in air samples using the polymerase chain reaction and speciesspecific primers. Phytopathology. 97:1290–1297. [CrossRef] [PubMed] [Google Scholar]
  • Gadoury, D. M., Cadle-Davidson, L., Wilcox, W. F., Dry, I. B., Seem, R. C., and Milgroom, M. G. 2012. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology. 13:1–16. [CrossRef] [PubMed] [Google Scholar]
  • Linzer, D. A., and Lewis, J. B. 2011. poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software. 42 Available at: [CrossRef] [Google Scholar]
  • Mahaffee, W. F., Margairaz, F., Ulmer, L., Bailey, B. N., Stoll, R. Submitted 2022. Catching spores: A practical guide to linking biology and physics for monitoring airborne inoculum. Plant Disease. [PubMed] [Google Scholar]
  • Miles, T. D., Neill, T. M., Colle, M., Warneke, B., Robinson, G., Stergiopoulos, I., and Mahaffee, W. F. 2021. Allele-specific detection methods for QoI fungicide-resistant Erysiphe necator in vineyards. Plant Disease. 105:175–182. [CrossRef] [PubMed] [Google Scholar]
  • Parnell, S., Gottwald, T. R., Cunniffe, N. J., Alonso Chavez, V., and van den Bosch, F. 2015. Early detection surveillance for an emerging plant pathogen: a rule of thumb to predict prevalence at first discovery. Proceedings of the Royal Society B: Biological Sciences. 282:20151478. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL [Google Scholar]
  • Thiessen, L., Keune, J. A., Neill, T. M., Turechek, W. W., Grove, G.G., and Mahaffee, W. F. 2016. Development of a grower-conducted inoculum detection assay for management of grape powdery mildew. Plant Pathology. 65:238–249. [CrossRef] [Google Scholar]
  • Thiessen, L. D., Neill, T. M., and Mahaffee, W. F. 2018. Assessment of Erysiphe necator ascospore release models for use in the Mediterranean climate of western Oregon. Plant Disease. 102:1500–1508. [CrossRef] [PubMed] [Google Scholar]
  • Turechek, W. W., Webster, C. G., Duan, J., Roberts, P. D., Kousik, C. S., and Adkins, S. 2013. The use of latent class analysis to estimate the sensitivities and specificities of diagnostic tests for squash vein yellowing virus in cucurbit species when there is no gold standard. Phytopathology. 103:1243–1251. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.