Open Access
Issue |
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 5 | |
Section | Epidemiology and Disease Forecasting | |
DOI | https://doi.org/10.1051/bioconf/20225004001 | |
Published online | 05 August 2022 |
- Althaus, C. L., & Bonhoeffer, S. (2005). Stochastic Interplay between Mutation and Recombination during the Acquisition of Drug Resistance Mutations in Human Immunodeficiency Virus Type 1. Journal of Virology, 79(21), 13572–13578. https://doi.org/10.1128/JVI.79.21.13572 [CrossRef] [PubMed] [Google Scholar]
- Arenas, M., Araujo, N. M., Branco, C., Castelhano, N., Castro-Nallar, E., & Pérez-Losada, M. (2018). Mutation and recombination in pathogen evolution: Relevance, methods and controversies. Infection, Genetics and Evolution, 63(September 2017), 295–306. https://doi.org/10.1016/j.meegid.2017.09.029 [CrossRef] [PubMed] [Google Scholar]
- Blum, M., Waldner, M., & Gisi, U. (2010). A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genetics and Biology, 47(6), 499–510. https://doi.org/10.1016/j.fgb.2010.02.009 [Google Scholar]
- Burdon, J. J., Barrett, L. G., Rebetzke, G., & Thrall, P. H. (2014). Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 7(6), 609–624. https://doi.org/10.1111/eva.12175 [Google Scholar]
- Caffi, T., Rossi, V., & Lusitani, M. (2011). Long-term survival of Plasmopara viticola oospores. IOBC/WPRS Bulletin, 66, 111–114. [Google Scholar]
- Chen, W.-J., Delmotte, F., Richard-Cervera, S., Douence, L., Greif, C., & Corio-Costet, M. F. (2007). At least two origins of fungicide resistance in grapevine downy mildew populations. Applied and Environmental Microbiology, 73(16), 5162–5172. https://doi.org/10.1128/AEM.00507-07 [CrossRef] [PubMed] [Google Scholar]
- Clément, J. A. J., Magalon, H., Pellé, R., Marquer, B., & Andrivon, D. (2010). Alteration of pathogenicity-linked life-history traits by resistance of its host Solanum tuberosum impacts sexual reproduction of the plant pathogenic oomycete Phytophthora infestans. Journalof Evolutionary Biology, 23(12), 2668–2676. https://doi.org/10.1111/j.1420-9101.2010.02150.x [CrossRef] [Google Scholar]
- Crété, R., Pires, R. N., Barbetti, M. J., & Renton, M. (2020). Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains. Scientific Reports, 10, 1–17. https://doi.org/10.1038/s41598-020-76788-7 [CrossRef] [PubMed] [Google Scholar]
- Curl, E. A. (1963). Control of plant diseases by crop rotation. The Botanical Review, 29(4), 413–479. https://doi.org/10.1016/b978-0-12-044563-9.50013-x [CrossRef] [Google Scholar]
- Delmas, E. L., Fabre, F., Jolivet, J., Mazet, I. D., Richart Cervera, S., Delière, L., & Delmotte, F. (2016). Adaptation of a plant pathogen to partial host resistance : selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications. https://doi.org/10.1111/eva.12368 [Google Scholar]
- Djian-Caporalino, C., Palloix, A., Fazari, A., Marteu, N., Barbary, A., Abad, P., Sage-Palloix, A. M., Mateille, T., Risso, S., Lanza, R., Taussig, C., & Castagnone-Sereno, P. (2014). Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biology, 14(1), 1–13. https://doi.org/10.1186/1471-2229-14-53 [CrossRef] [PubMed] [Google Scholar]
- Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296. [CrossRef] [Google Scholar]
- Fuchs, M. (2017). Pyramiding resistance-conferring gene sequences in crops. Current Opinion in Virology, 26, 36–42. https://doi.org/10.1016/j.coviro.2017.07.004 [CrossRef] [PubMed] [Google Scholar]
- Gessler, C., Pertot, I., & Perazzolli, M. (2011). Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea, 50(1), 3–44. https://doi.org/10.14601/Phytopathol_Mediterr-9360 [Google Scholar]
- Gilligan, C. A. (2008). Sustainable agriculture and plant diseases: an epidemiological perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 741–759. https://doi.org/10.1098/rstb.2007.2181 [CrossRef] [PubMed] [Google Scholar]
- Gilligan, C. A., Truscott, J. E., & Stacey, A. J. (2007). Impact of scale on the effectiveness of disease control strategies for epidemics with cryptic infection in a dynamical landscape: An example for a crop disease. Journal of the Royal Society Interface, 4, 925–934. https://doi.org/10.1098/rsif.2007.1019 [CrossRef] [PubMed] [Google Scholar]
- Koller, T., Brunner, S., Herren, G., Hurni, S., & Keller, B. (2018). Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. Theoretical and Applied Genetics, 131(4), 861–871. https://doi.org/10.1007/s00122-017-3043-9 [CrossRef] [PubMed] [Google Scholar]
- Lô-Pelzer, E., Aubertot, J. N., Bousset, L., Salam, M. U., & Jeuffroy, M. H. (2010). SIPPOM-WOSR: A Simulator for Integrated Pathogen POpulation Management of phoma stem canker on Winter OilSeed Rape. II. Sensitivity analysis. Field Crops Research, 118(1), 82–93. https://doi.org/10.1016/j.fcr.2010.04.006 [CrossRef] [Google Scholar]
- Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J. J., & Sattelmacher, B. (2000). Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of Experimental Botany, 51(351), 1721–1732. https://doi.org/10.1093/jexbot/51.351.1721 [CrossRef] [PubMed] [Google Scholar]
- McDonald, B. A. (2010). How can we achieve durable disease resistance in agricultural ecosystems ? The New Phytologist, 185(1), 3–5. [CrossRef] [PubMed] [Google Scholar]
- McDonald, B. A. (2014). Using dynamic diversity to achieve durable disease resistance in agricultural ecosystems. Tropical Plant Pathology, 39(3), 191–196. https://doi.org/10.1590/S1982-56762014000300001 [CrossRef] [Google Scholar]
- McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443 [CrossRef] [PubMed] [Google Scholar]
- Mundt, C. C., Cowger, C., & Garrett, K. A. (2002). Relevance of integrated disease management to resistance durability. Euphytica, 124(2), 245–252. https://doi.org/10.1023/A:1015642819151 [CrossRef] [Google Scholar]
- Papaïx, J., Rimbaud, L., Burdon, J. J., Zhan, J., & Thrall, P. H. (2018). Differential impact of landscape-scale strategies for crop cultivar deployment on disease dynamics, resistance durability and long-term evolutionary control. Evolutionary Applications, 11(5), 705–717. https://doi.org/10.1111/eva.12570 [CrossRef] [PubMed] [Google Scholar]
- Peressotti, E., Wiedemann-Merdinoglu, S., Delmotte, F., Bellin, D., Di Gaspero, G., Testolin, R., Merdinoglu, D., & Mestre, P. (2010). Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biology, 10(147). https://doi.org/10.1186/1471-2229-10-147 [CrossRef] [PubMed] [Google Scholar]
- Rimbaud, L., Fabre, F., Papaïx, J., Moury, B., Lannou, C., Barret, L. G., & Thrall, P. H. (2021). Models of plant resistance deployment. Annual Review of Phytopathology. [Google Scholar]
- Rimbaud, L., Papaïx, J., Rey, J.-F., Barrett, L. G., & Thrall, P. H. (2018). Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. InPLoS Computational Biology (Vol. 14, Issue 4). https://doi.org/10.1371/journal.pcbi.1006067 [Google Scholar]
- Rossi, V., Caffi, T., & Gobbin, D. (2013). Contribution of molecular studies to botanical epidemiology and disease modelling : grapevine downy mildew as a casestudy. European Journal of Plant Pathology, 135, 641–654. https://doi.org/10.1007/s10658-012-0114-2 [CrossRef] [Google Scholar]
- Sapoukhina, N., Durel, C. E., & Le Cam, B. (2009). Spatial deployment of gene-for-gene resistance governs evolution and spread of pathogen populations. Theoretical Ecology, 2, 229–238. https://doi.org/10.1007/s12080-009-0045-5 [CrossRef] [Google Scholar]
- Sapoukhina, N., Tyutyunov, Y., Sache, I., & Arditi, R. (2010). Spatially mixed crops to control the stratified dispersal of airborne fungal diseases. Ecological Modelling, 221(23), 2793–2800. https://doi.org/10.1016/j.ecolmodel.2010.08.020 [CrossRef] [Google Scholar]
- Shang, H., Grau, C. R., & Peters, R. D. (2000). Oospore germination of Aphanomyces euteiches in root exudates and on the rhizoplanes of crop plants. Plant Disease, 84(9), 994–998. https://doi.org/10.1094/PDIS.2000.84.9.994 [CrossRef] [PubMed] [Google Scholar]
- Uecker, H. (2017). Evolutionary rescue in randomly mating, selfing, and clonal populations. Evolution, 71(4), 845–858. https://doi.org/10.1111/evo.13191 [CrossRef] [Google Scholar]
- Watkinson-Powell, B., Gilligan, C. A., & Cunniffe, N. J. (2020). When does spatial diversification usefully maximize the durability of crop disease resistance? Phytopathology, 110(11), 1808–1820. https://doi.org/10.1094/PHYTO-07-19-0261-R [Google Scholar]
- Wolfe, M. S. (1985). The current status and prospect of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251–273. [CrossRef] [Google Scholar]
- Wong, F. P., Burr, H. N., & Wilcox, W. F. (2001). Heterothallism in Plasmopara viticola. PlantPathology, 50, 427–432. [Google Scholar]
- Xu, X. (2012). Super-races are not likely to dominate a fungal population within a life time of a perennial crop plantation of cultivar mixtures : a simulation study. BMC Ecology, 12, 1–10. [Google Scholar]
- Zhan, J., Thrall, P. H., Papaïx, J., Xie, L., & Burdon, J. J. (2015). Playing on a Pathogen’s Weakness: Using Evolution to Guide Sustainable Plant Disease Control Strategies. Annual Review of Phytopathology, 53, 19–43. https://doi.org/10.1146/annurev-phyto-080614120040 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.