Open Access
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
Article Number 04007
Number of page(s) 4
Section Epidemiology and Disease Forecasting
Published online 05 August 2022
  • Bois, B. et al. (2017). Climate vs grapevine pests and diseases worldwide: The first results of a global survey. Journal International des Sciences de la Vigne et du Vin, pp. 133–139. doi: 10.20870/oeno-one.2016.0.0.1780. [Google Scholar]
  • Boso, S. et al. (2019). Factors affecting the vineyard populational diversity of Plasmopara viticola. ThePlant Pathology Journal, 35(2), p. 125. doi: 10.5423/PPJ.OA.09.2018.0194. [CrossRef] [PubMed] [Google Scholar]
  • Brischetto, C. et al. (2020). Can spore sampler data be used to predict Plasmopara viticola infection in vineyards? Frontiers in Plant Science, 11(August), pp. 1–12. doi: 10.3389/fpls.2020.01187. [PubMed] [Google Scholar]
  • Brischetto, C. et al. (2021). A weather-driven model for predicting infections of grapevines by sporangia of Plasmopara viticola. Frontiersin Plant Science, 12, p. 636607. doi: 10.3389/fpls.2021.636607. [CrossRef] [Google Scholar]
  • Caffi, T. et al. (2013). Production and release of asexual sporangia in Plasmopara viticola. Phytopathology, 103(1), pp. 64–73. doi: 10.1094/PHYTO-04-12-0082-R. [Google Scholar]
  • Chen, M. (2019). Analyse du risque de mildiou de la vigne dans le Bordelais à partir de données régionales et d’informations locales collectées en cours de saison., (2019SACLA031). Available at: [Google Scholar]
  • Douillet, A et al. Submitted in Journal of Applied Microbiology. [Google Scholar]
  • Fontaine, M. C. et al. (2021). Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola. CurrentBiology. doi: 10.1016/j.cub.2021.03.009. [Google Scholar]
  • Gobbin, D. et al. (2005). Importance of secondary inoculum of Plasmopara viticola to epidemics of grapevine downy mildew. Plant Pathology, 54(4), pp. 522–534. doi: 10.1111/j.1365-3059.2005.01208.x. [CrossRef] [Google Scholar]
  • Hong, C. F. et al. (2020). Temporal disease dynamics and relative importance of sexual and asexual reproduction of grape downy mildew (Plasmopara viticola) in an isolated vineyard in the North Georgia Mountains, USA. Plant Pathology, 69(9), pp. 1721–1730. doi: 10.1111/ppa.13263. [CrossRef] [Google Scholar]
  • Komárek, M. et al. (2010). Contamination of vineyard soils with fungicides : A review of environmental and toxicological aspects., 36, pp. 138–151. doi: 10.1016/j.envint.2009.10.005. [Google Scholar]
  • Maddalena, G. et al. (2020). Genetic structure of Italian population of the grapevine downy mildew agent Plasmopara viticola., Annals of Applied Biology, 176(3), pp. 257–267. doi: 10.1111/aab.12567. [CrossRef] [Google Scholar]
  • Mercadante, R. et al. (2019). Assessment of penconazole exposure in winegrowers using urinary biomarkers. Environmental Research, 168(August 2018), pp. 54–61. doi: 10.1016/j.envres.2018.09.013. [CrossRef] [PubMed] [Google Scholar]
  • Pimbert, M. (2011) Participatory research and on-farm management of agricultural biodiversity in Europe. [Google Scholar]
  • Raherison, C. et al. (2019). Pesticides exposure by air in vineyard rural area and respiratory health in children : A pilot study. Environmental Research, 169 (November 2018), pp. 189–195. doi: 10.1016/j.envres.2018.11.002. [CrossRef] [PubMed] [Google Scholar]
  • Ronzon, C. (1987). Modélisation du comportement épidémique du mildiou de la vigne : étude du rôle de la phase sexuée de Plasmopara viticola., p. 119 p. Available at: [Google Scholar]
  • Rossi, V., Caffi, T. and Gobbin, D. (2013). Contribution of molecular studies to botanical epidemiology and disease modelling: Grapevine downy mildew as a casestudy. European Journal of Plant Pathology, pp. 641–654. doi: 10.1007/s10658-012-0114-2. [CrossRef] [Google Scholar]
  • Rossi, V., Giosuè, S. and Caffi, T. (2009). Modelling the dynamics of infections caused by sexual and asexual spores during Plasmopara Viticola epidemics. Journal of Plant Pathology, 91(3), pp. 615–627. doi: 10.4454/jpp.v91i3.553. [Google Scholar]
  • Rumbou, A. and Gessler, C. (2006). Particular structure of Plasmopara viticola populations evolved under Greek island conditions. Phytopathology, 96(5), pp. 501–509. doi: 10.1094/PHYTO-96-0501. [CrossRef] [PubMed] [Google Scholar]
  • Santos, R. F. et al. (2020). The climate-driven genetic diversity has a higher impact on the population structure of Plasmopara viticola than the production system or qoi fungicide sensitivity in subtropical Brazil. Frontiers in Microbiology, 11, p. 2236. doi: 10.3389/FMICB.2020.575045/BIBTEX. [Google Scholar]
  • Taylor, A. S. et al. (2019). Population genetic structure and cryptic species of Plasmopara viticola in Australia. Phytopathology, 109(11), pp. 1975–1983. doi: 10.1094/PHYTO-04-19-0146-R. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.