Open Access
Issue |
BIO Web Conf.
Volume 55, 2022
5th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2022)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/bioconf/20225501016 | |
Published online | 21 November 2022 |
- Smolen, J. S., Aletaha, D., McInnes, I. B. (2016). Rheumatoid arthritis. Lancet (London, England), 388(10055),2023–2038. [Google Scholar]
- Duarte-Delgado, N. P., Cala, M. P., Barreto, A., Rodríguez C, L. S. (2022). Metabolites and metabolic pathways associated with rheumatoid arthritis and systemic lupus erythematosus. Journal of translational autoimmunity, 5, 100150. [CrossRef] [PubMed] [Google Scholar]
- Kondo, Y., Yokosawa, M., Kaneko, S., Furuyama, K., Segawa, S., Tsuboi, H., Matsumoto, I., Sumida, T. (2018). Review: Transcriptional Regulation of CD4+ T Cell Differentiation in Experimentally Induced Arthritis and Rheumatoid Arthritis. Arthritis & rheumatology (Hoboken, N.J.), 70(5),653–661. [CrossRef] [PubMed] [Google Scholar]
- Udalova, I. A., Mantovani, A., Feldmann, M. (2016). Macrophage heterogeneity in the context of rheumatoid arthritis. Nature reviews. Rheumatology, 12(8),472–485. [CrossRef] [PubMed] [Google Scholar]
- Wu, Z., Ma, D., Yang, H., Gao, J., Zhang, G., Xu, K., Zhang, L. (2021). Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers and phenotypes. International immunopharmacology, 93, 107392. [CrossRef] [PubMed] [Google Scholar]
- O’Neill, L. A., Kishton, R. J., Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nature reviews. Immunology, 16(9),553–565. [CrossRef] [PubMed] [Google Scholar]
- Iwata, S., Tanaka, Y. (2021). Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert review of clinical immunology, 17(10),1121–1130. [CrossRef] [PubMed] [Google Scholar]
- Stathopoulou, C., Nikoleri, D., Bertsias, G. (2019). Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy, 11(9),813–829. [CrossRef] [PubMed] [Google Scholar]
- Cai, W. W., Yu, Y., Zong, S. Y., Wei, F. (2020). Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflammation research: official journal of the European Histamine Research Society … [et al.], 69(11),1087–1101. [CrossRef] [PubMed] [Google Scholar]
- Weyand, C. M., Goronzy, J. J. (2020). Immunometabolism in the development of rheumatoid arthritis. Immunological reviews, 294(1),177–187. [CrossRef] [PubMed] [Google Scholar]
- Yang, Z., Shen, Y., Oishi, H., Matteson, E. L., Tian, L., Goronzy, J. J., Weyand, C. M. (2016). Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Science translational medicine, 8 (331),331ra38. [PubMed] [Google Scholar]
- Weyand, C. M., Goronzy, J. J. (2021). The immunology of rheumatoid arthritis. Nature immunology, 22(1),10–18. [CrossRef] [PubMed] [Google Scholar]
- Li, Y., Shen, Y., Jin, K., Wen, Z., Cao, W., Wu, B., Wen, R., Tian, L., Berry, G. J., Goronzy, J. J., Weyand, C. M. (2019). The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. Cell metabolism, 30(3),477–492.e6. [Google Scholar]
- Wen, Z., Jin, K., Shen, Y., Yang, Z., Li, Y., Wu, B., Tian, L., Shoor, S., Roche, N. E., Goronzy, J. J., Weyand, C. M. (2019). N-myristoyltransferase deficiency impairs activation of kinase AMPK andpromotes synovial tissue inflammation. Nature immunology, 20(3),313–325. [CrossRef] [PubMed] [Google Scholar]
- Okano, T., Saegusa, J., Takahashi, S., Ueda, Y., Morinobu, A. (2018). Immunometabolism in rheumatoid arthritis. Immunological medicine, 41(3),89–97. [CrossRef] [PubMed] [Google Scholar]
- Su, Q., Jing, J., Li, W., Ma, J., Zhang, X., Wang, Z., Zhou, Z., Dai, L., Shao, L. (2019). Impaired Tip60- mediated Foxp3 acetylation attenuates regulatory T cell development in rheumatoid arthritis. Journal of autoimmunity, 100, 27–39. [CrossRef] [PubMed] [Google Scholar]
- Angiari, S., Runtsch, M. C., Sutton, C. E., Palsson- McDermott, E. M., Kelly, B., Rana, N., Kane, H., Papadopoulou, G., Pearce, E. L., Mills, K., O’Neill, L. (2020). Pharmacological Activation of Pyruvate Kinase M2 Inhibits CD4+ T Cell Pathogenicity and Suppresses Autoimmunity. Cell metabolism, 31(2),391–405.e8. [CrossRef] [PubMed] [Google Scholar]
- Cutolo, M., Campitiello, R., Gotelli, E., Soldano, S. (2022). The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in immunology, 13, 867260. [CrossRef] [PubMed] [Google Scholar]
- Di Benedetto, P., Ruscitti, P., Vadasz, Z., Toubi, E., Giacomelli, R. (2019). Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmunity reviews, 18(10), 102369. [CrossRef] [PubMed] [Google Scholar]
- Weyand, C. M., Zeisbrich, M., Goronzy, J. J. (2017). Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Current opinion in immunology, 46, 112–120. [CrossRef] [PubMed] [Google Scholar]
- Xu, J., Jiang, C., Wang, X., Geng, M., Peng, Y., Guo, Y., Wang, S., Li, X., Tao, P., Zhang, F., Han, Y., Ning, Q., Zhu, W., Meng, L., Lu, S. (2020). Upregulated PKM2 in Macrophages Exacerbates Experimental Arthritis via STAT1 Signaling. Journal of immunology (Baltimore, Md.: 1950), 205(1),181–192. [CrossRef] [PubMed] [Google Scholar]
- Falconer, J., Murphy, A. N., Young, S. P., Clark, A. R., Tiziani, S., Guma, M., Buckley, C. D. (2018). Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis & rheumatology (Hoboken, N.J.), 70(7),984–999. [CrossRef] [PubMed] [Google Scholar]
- Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D., Guma, M. (2017). Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis research & therapy, 19(1), 110. [CrossRef] [PubMed] [Google Scholar]
- Masoumi, M., Mehrabzadeh, M., Mahmoudzehi, S., Mousavi, M. J., Jamalzehi, S., Sahebkar, A., Karami, J. (2020). Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: Latest evidence and therapeutic approaches in rheumatoid arthritis. International immunopharmacology, 89(Pt A), 107064. [CrossRef] [PubMed] [Google Scholar]
- Ahn, J. K., Kim, S., Hwang, J., Kim, J., Kim, K. H., Cha, H. S. (2016). GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Joint bone spine, 83(6),707–713. [CrossRef] [PubMed] [Google Scholar]
- Takahashi, S., Saegusa, J., Sendo, S., Okano, T., Akashi, K., Irino, Y., Morinobu, A. (2017). Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis research & therapy, 19(1), 76. [CrossRef] [PubMed] [Google Scholar]
- Cejka, D., Hayer, S., Niederreiter, B., Sieghart, W., Fuereder, T., Zwerina, J., Schett, G. (2010). Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis and rheumatism, 62(8),2294–2302. [CrossRef] [PubMed] [Google Scholar]
- Dai, Q., Zhou, D., Xu, L., Song, X. (2018). Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug design, development and therapy, 12, 4095–4105. [CrossRef] [Google Scholar]
- Ben-Sahra, I., Manning, B. D. (2017). mTORC1 signaling and the metabolic control of cell growth. Current opinion in cell biology, 45, 72–82. [CrossRef] [PubMed] [Google Scholar]
- Liu, S., Ma, H., Zhang, H., Deng, C., Xin, P. (2021). Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clinical immunology (Orlando, Fla.), 230, 108793. [CrossRef] [PubMed] [Google Scholar]
- Werlen, G., Jain, R., Jacinto, E. (2021). MTOR Signaling and Metabolism in Early T Cell Development. Genes, 12(5), 728. [CrossRef] [PubMed] [Google Scholar]
- Chi H. (2012). Regulation and function of Mtor signalling in T cell fate decisions. Nature reviews. Immunology, 12(5),325–338. [CrossRef] [PubMed] [Google Scholar]
- Covarrubias, A. J., Aksoylar, H. I., Horng, T. (2015). Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in immunology, 27(4),286–296. [CrossRef] [PubMed] [Google Scholar]
- Herzig, S., Shaw, R. J. (2018). AMPK: guardian of metabolism and mitochondrial homeostasis. Nature reviews. Molecular cell biology, 19(2),121–135. [CrossRef] [PubMed] [Google Scholar]
- Qiu, J., Wu, B., Goodman, S. B., Berry, G. J., Goronzy, J. J., Weyand, C. M. (2021). Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Frontiers in immunology, 12, 652771. [CrossRef] [PubMed] [Google Scholar]
- Day, E. A., Ford, R. J., Steinberg, G. R. (2017). AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends in endocrinology and metabolism: TEM, 28(8),545–560. [CrossRef] [PubMed] [Google Scholar]
- Shi, M., Wang, J., Xiao, Y., Wang, C., Qiu, Q., Lao, M., Yu, Y., Li, Z., Zhang, H., Ye, Y., Liang, L., Yang, X., Chen, G., Xu, H. (2018). Glycogen Metabolism and Rheumatoid Arthritis: The Role of Glycogen Synthase 1 in Regulation of Synovial Inflammation via Blocking AMP-Activated Protein Kinase Activation. Frontiers in immunology, 9, 1714. [CrossRef] [PubMed] [Google Scholar]
- Okano, T., Saegusa, J., Nishimura, K., Takahashi, S., Sendo, S., Ueda, Y., Morinobu, A. (2017). 3- bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Scientific reports, 7, 42412. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Carbonell, R., Divakaruni, A. S., Lodi, A., Vicente-Suarez, I., Saha, A., Cheroutre, H., Boss, G. R., Tiziani, S., Murphy, A. N., Guma, M. (2016). Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis & rheumatology (Hoboken, N.J.), 68(7),1614–1626. [CrossRef] [PubMed] [Google Scholar]
- Hanlon, M. M., Rakovich, T., Cunningham, C. C., Ansboro, S., Veale, D. J., Fearon, U., McGarry, T. (2019). STAT3 Mediates the Differential Effects of Oncostatin M and TNFα on RA Synovial Fibroblast and Endothelial Cell Function. Frontiers in immunology, 10, 2056. [CrossRef] [PubMed] [Google Scholar]
- McGarry, T., Orr, C., Wade, S., Biniecka, M., Wade, S., Gallagher, L., Low, C., Veale, D. J., Fearon, U. (2018). JAK/STAT Blockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis & rheumatology (Hoboken, N.J.), 70(12),1959–1970. [Google Scholar]
- Kim, J. W., Choe, J. Y., Park, S. H. (2022). Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. The Korean journal of internal medicine, 37(1),13–26. [CrossRef] [PubMed] [Google Scholar]
- Pucino, V., Certo, M., Varricchi, G., Marone, G., Ursini, F., Rossi, F. W., De Paulis, A., Mauro, C., Raza, K., Buckley, C. D. (2020). Metabolic Checkpoints in Rheumatoid Arthritis. Frontiers in physiology, 11, 347. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.