Open Access
Issue
BIO Web Conf.
Volume 55, 2022
5th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2022)
Article Number 01018
Number of page(s) 9
DOI https://doi.org/10.1051/bioconf/20225501018
Published online 21 November 2022
  • Haworth R.A, Hunter D.R. (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys.; 195:460–467. [CrossRef] [Google Scholar]
  • Halestrap A.P, Pereira G.C, Pasdois P. The role of Hexokinase in cardioprotection - mechanism and potential for translation. Br. J.Pharmacol. 2014 [Google Scholar]
  • Halestrap A.P. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol .,46:821-31. [Google Scholar]
  • Dong Seok Lee1, Yong Wook Jung. (2018) Protective Effect of Right Ventricular Mitochondrial Damage by Cyclosporine A in Monocrotalineinduced Pulmonary Hypertension. Korean Circ J.,1135-1144 [Google Scholar]
  • Crompton M, Costi A. (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur. J. Biochem., 178:489– 501. [Google Scholar]
  • Daicho T, Yagi T, Abe Y, et al. (2009) Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci., 111:33-43. [CrossRef] [PubMed] [Google Scholar]
  • Fournier N, Ducet G, Crevat A. (1987) Action of cyclosporine on mitochondrial calcium fluxes. J. Bioenerg. Biomembr., 19:297–303. [CrossRef] [PubMed] [Google Scholar]
  • Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, ShoshanBarmatz V, Herrmann S, et al. (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. USA., 107:436–441. [CrossRef] [PubMed] [Google Scholar]
  • Murphy MP. (2009) How mitochondria produce reactive oxygen species. Biochem J.,417:1–13. [CrossRef] [PubMed] [Google Scholar]
  • Chen YR, Zweier JL. (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res.;114:524–537. [CrossRef] [PubMed] [Google Scholar]
  • Elizabeth Murphy, Hossein Ardehali, Robert S Balaban, Fabio DiLisa, Gerald W Dorn 2nd, Richard N Kitsis, Kinya Otsu, Peipei Ping, Rosario Rizzuto, Michael N Sack, Douglas Wallace, Richard J Youle. (2016) Mitochondrial Function, Biology, and Role in Disease. Circ Res.,10;118(12):1960-91. [CrossRef] [PubMed] [Google Scholar]
  • Kerstin B, Gerd H, Rainer S. (2011) Nuclear-encoded mitochondrial proteins and their role in cardioprotection. Biochim Biophys Acta.; 1813(7):1286-94. [CrossRef] [PubMed] [Google Scholar]
  • Kirichok Y, Krapivinsky G, Clapham DE. (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature .,427, 360–364. [CrossRef] [PubMed] [Google Scholar]
  • Baughman JM et al. (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341– 345. [CrossRef] [PubMed] [Google Scholar]
  • Sancak Y et al. (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science., 342, 1379–1382. [CrossRef] [PubMed] [Google Scholar]
  • Paillard M et al. (2018) MICU1 interacts with the DRing of the MCU pore to control its Ca2+ flux and sensitivity to Ru360. Mol. Cell., 72, 778–785. [CrossRef] [Google Scholar]
  • Borillo, Matt M, Pearl Q, Mirko V, Christopher C, Michael M, Shabana D, Kimberlee F, Natalie G,Daniele A, Steven B, Asa B. G, Christopher G, Roberta A. G, etal. (2010) Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes Gwynngelle A. Circ Res.,16; 106(7): 1265–1274. [CrossRef] [PubMed] [Google Scholar]
  • Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., Nunnari, J. and Voeltz, G.K. (2011) ER tubules mark sites of mitochondrial division. Science., 334, 358–362 [CrossRef] [PubMed] [Google Scholar]
  • Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, BielsaMasdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S. (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA .,96:8144– 8149. [CrossRef] [PubMed] [Google Scholar]
  • Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. (1997) Apoptosis in human acute myocardial infarction. Circulation., 95:320–323. [CrossRef] [PubMed] [Google Scholar]
  • Gustafsson AB, Gottlieb RA. (2007) BCL-2 family members and apoptosis, taken to heart. AM J Physiol Cell Physiol., 292:C45–51. [CrossRef] [PubMed] [Google Scholar]
  • Zou H, Li Y, Liu X, Wang X. (1999) An APAF1- cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem., 274:11549–11556. [CrossRef] [PubMed] [Google Scholar]
  • Halestrap AP, Kerr PM, Javadov S, Woodfield KY. (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta.,1366:79–94. [CrossRef] [Google Scholar]
  • Rosca MG, Hoppel CL. (2013) Mitochondrial dysfunction in heart failure. Heart Fail Rev., 18:607-22. [CrossRef] [PubMed] [Google Scholar]
  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. (2010) The BCL-2 family reunion. Mol Cell., 37:299–310. [CrossRef] [Google Scholar]
  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell., 8:705–711. [CrossRef] [PubMed] [Google Scholar]
  • Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB. (2005) Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood., 105:4477–4483. [CrossRef] [PubMed] [Google Scholar]
  • Lilly M, Sandholm J, Cooper JJ, Kosikinen PJ, Kraft A. (1999) The Pim-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2 dependent pathway. Oncogene., 18:4022–4031. [CrossRef] [PubMed] [Google Scholar]
  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. (2004) Glycogen synthase kinase-3 mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest., 113:1535–1549 [CrossRef] [PubMed] [Google Scholar]
  • Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y, Shimamoto K. (2007) Modulation of the mitochondrial permeability transition pore complex in GSK-3-mediated myocardial protection. J Mol Cell Cardiol., 43:564–570 [CrossRef] [PubMed] [Google Scholar]
  • Takayuki M, Tetsuji M, Hiroyuki H, Masaya To, Toshiyuki Y, Takahiro S, Yoshiaki T, Akifumi T, Satoko I, and Kazuaki S. (2009) Endoplasmic Reticulum Stress in Diabetic Hearts Abolishes Erythropoietin-Induced Myocardial Protection by Impairment of Phospho–Glycogen Synthase Kinase- 3–Mediated Suppression of Mitochondrial Permeability Transition.Diabetes., 58 (12):2863-72 [CrossRef] [PubMed] [Google Scholar]
  • Jope RS, Johnson GVW. (2004) The glamour and gloom of glycogen synthase kinase-3 (GSK3). Trends Biochem. Sci., 29:95–102. [CrossRef] [Google Scholar]
  • Eléonore B and Richard S. J. (2006) The Paradoxical Pro- and Anti-apoptotic Actions of GSK3 in the Intrinsic and Extrinsic Apoptosis Signaling Pathways.Prog Neurobiol.,79(4):173-89. [CrossRef] [PubMed] [Google Scholar]
  • Miki T, Miura T, Yano T, Takahashi A, Sakamoto J, Tanno M, Kobayashi H, Ikeda Y, Nishihara M, Naitoh K, Ohori K, Shimamoto K. (2006) Alteration in erythropoietin-induced cardioprotective signaling by postinfarct ventricular remodeling. J Pharmacol Exp Ther., 317:68–75 [CrossRef] [PubMed] [Google Scholar]
  • Boengler K, Hilfifiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Therap., 120:172–185 [CrossRef] [Google Scholar]
  • Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal but not in interfifibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147 [CrossRef] [PubMed] [Google Scholar]
  • Kerstin B, Denise H K, Gerd H, Rainer S. (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion.Basic Res Cardiol.,105 (6):771-85. [Google Scholar]
  • Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science., 323:793–797 [CrossRef] [PubMed] [Google Scholar]
  • Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest., 109:1143–1148 [CrossRef] [PubMed] [Google Scholar]
  • Myers MG (2009) Moonlighting in mitochondria. Science., 323:723–724 [CrossRef] [PubMed] [Google Scholar]
  • Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol .,295: H1649–H1656 [Google Scholar]
  • Dong S.L, Yong W.J. (2018) Protective Effect of Right Ventricular Mitochondrial Damage by Cyclosporine A in Monocrotaline-induced Pulmonary Hypertension. Korean Circ J., 48(12):1135-1144. [CrossRef] [PubMed] [Google Scholar]
  • Humbert M, Morrell NW, Archer SL, et al. (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol .,43:13S- 24S. [Google Scholar]
  • Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta., 1813:616-22. [Google Scholar]
  • Lim WY, Messow CM, Berry C. (2012)Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis. Br J Pharmacol., 165:2034-43. [CrossRef] [PubMed] [Google Scholar]
  • Campian ME, Verberne HJ, Hardziyenka M, et al. (2009) Serial noninvasive assessment of apoptosis during right ventricular disease progression in rats. J Nucl Med., 50:1371-7. [CrossRef] [PubMed] [Google Scholar]
  • Zuo XR, Wang Q, Cao Q, et al. (2012) Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension. PLoS One., 7:e44485. [PubMed] [Google Scholar]
  • Crompton M, Costi A. (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem .,178:489-501. [CrossRef] [PubMed] [Google Scholar]
  • Xuan Y-T, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA., 98:9050– 9055 [Google Scholar]
  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis., 12:815–833 [CrossRef] [PubMed] [Google Scholar]
  • Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. (2007) Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol RegulIntegr Comp Physiol., 292:R920–R926 [Google Scholar]
  • Halestrap AP, Pasdois P. (1998) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta.,1366:79–94. [CrossRef] [PubMed] [Google Scholar]
  • Gu JJ, Wang Z, Reeves R, Magnuson NS. (2009) PIM1 phosphorylates and negatively regulates ASK1- mediated apoptosis. Oncogene.,28:4261– 4271. [PubMed] [Google Scholar]
  • Yamamura, A., Guo, Q., Yamamura, H., Zimnicka, A. M., Pohl, N. M., Smith, K. A., et al. (2012). Enhanced Ca2+-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ. Res., 111, 469–481. [CrossRef] [PubMed] [Google Scholar]
  • Jennifer Q K, Jeffery D M. (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab.,3; 21(2): 206–214. 46:821–831.[PubMed: 19265700] [CrossRef] [Google Scholar]
  • Hengartner MO. (2000) The biochemistry of apoptosis. Nature;407:770–776. [CrossRef] [PubMed] [Google Scholar]
  • Miyamoto S, Rubio M, Sussman MA. (2009) Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovasc Res.,82:272–285. [Google Scholar]
  • Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfifibrillar mitochondria isolated from rat cardiacmuscle. J Biol Chem., 252:8731–8739 [CrossRef] [Google Scholar]
  • Kwong JQ, Molkentin JD(2015). Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab., 21:206-14. [CrossRef] [PubMed] [Google Scholar]
  • Tong H, Imahashi K, Steenbergen C, Murphy, E. (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ. Res., 90:377–379 [CrossRef] [PubMed] [Google Scholar]
  • Loson OC, Song Z, Chen H, Chan DC. (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell., 24(5):659– 667. DOI: 10.1091/mbc.E12-10-0721 [CrossRef] [PubMed] [Google Scholar]
  • Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K. (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Bio.,191(6):1141–1158. DOI:10.1083/jcb.201007152 [CrossRef] [PubMed] [Google Scholar]
  • Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL. (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemiareperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J: official publication of the Federation of American Societies for Experimental Biology., 28(1):316–326. DOI:10.1096/fj.12-226225 [CrossRef] [PubMed] [Google Scholar]
  • Lian T, Monica N, Jeffrey M, Asish D, Kimberly D, Snary, Danchen W, Kuang-Hueih C, Zhigang H, Willard W. S, Shelby K, Stephen L. A. (2017) Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension.J Mol Med (Berl).,95(4): 381–393. doi:10.1007/s00109-017-1522-8. [CrossRef] [PubMed] [Google Scholar]
  • John J. R, Jessica H, Shelby K, Nathan D. H, Lindsay B, Lian T, Julia E. H, Amer M. J, Stephen L. A. (2015) Right Ventricular Adaptation and Failure in Pulmonary Arterial Hypertension.Can J Cardiol.,31(4): 391–406. doi: 10.1016/j.cjca.2015.01.023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.