Open Access
Issue |
BIO Web Conf.
Volume 55, 2022
5th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2022)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bioconf/20225501025 | |
Published online | 21 November 2022 |
- Buitimea-Cantúa, N.E., Gutiérrez-Uribe, J.A., Serna- Saldívar, S.O., 2018. Phenolic–Protein Interactions: Effects on Food Properties and Health Benefits. J. Med. Food 21, 188–198. https://doi.org/10.1089/jmf.2017.0057 [CrossRef] [PubMed] [Google Scholar]
- Cao, n.d. Effects of the interaction between whey protein and polyphenols on the functional properties of proteins at neutral pH. Jiangnan University [Google Scholar]
- Chanphai, P., Bourassa, P., Kanakis, C.D., Tarantilis, P.A., Polissiou, M.G., Tajmir-Riahi, H.A., 2018. Review on the loading efficacy of dietary tea polyphenols with milk proteins. Food Hydrocoll. 77, 322–328. https://doi.org/10.1016/j.foodhyd.2017.10.008 [CrossRef] [Google Scholar]
- Chen, J., Zhang, X., Fu, M., Chen, X., Pius, B.A., Xu, X., 2021. Ultrasound-assisted covalent reaction of myofibrillar protein: The improvement of functional properties and its potential mechanism. Ultrason. Sonochem. 76, 105652. https://doi.org/10.1016/j.ultsonch.2021.105652 [CrossRef] [Google Scholar]
- Clare, D., Catignani, G., Swaisgood, H., 2003. Biodefense Properties of Milk: The Role of Antimicrobial Proteins and Peptides. Curr. Pharm. Des. 9, 1239–1255. https://doi.org/10.2174/1381612033454874 [CrossRef] [Google Scholar]
- Dalgleish, D.G., 2011. On the structural models of bovine casein micelles—review and possible improvements. Soft Matter 7, 2265–2272. https://doi.org/10.1039/C0SM00806K [CrossRef] [Google Scholar]
- de Morais, F.P.R., Pessato, T.B., Rodrigues, E., Peixoto Mallmann, L., Mariutti, L.R.B., Netto, F.M., 2020. Whey protein and phenolic compound complexation: Effects on antioxidant capacity before and after in vitro digestion. Food Res. Int. 133, 109104. https://doi.org/10.1016/j.foodres.2020.109104 [CrossRef] [Google Scholar]
- Delius, J., Frank, O., Hofmann, T., 2017. Label-free quantitative 1H NMR spectroscopy to study lowaffinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenolmediated astringency. PLOS ONE 12, e0184487. https://doi.org/10.1371/journal.pone.0184487 [CrossRef] [PubMed] [Google Scholar]
- Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C., Angioni, A., Dessi, S., Marzouki, N., Cabras, P., 2008. Comparative Analysis of Polyphenolic Profiles and Antioxidant and Antimicrobial Activities of Tunisian Pome Fruit Pulp and Peel Aqueous Acetone Extracts. J. Agric. Food Chem. 56, 1084–1090. https://doi.org/10.1021/jf072409e [CrossRef] [PubMed] [Google Scholar]
- Freitas, V.D., Mateus, N., 2002. Nephelometric study of salivary protein–tannin aggregates. J. Sci. Food Agric. [Google Scholar]
- Gallo, M., Vinci, G., Graziani, G., De Simone, C., Ferranti, P., 2013. The interaction of cocoa polyphenols with milk proteins studied by proteomic techniques. Food Res. Int. 54, 406–415. https://doi.org/10.1016/j.foodres.2013.07.011 [CrossRef] [Google Scholar]
- Hagerman, A.E., Butler, L.G., 1981. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256, 4494–4497. https://doi.org/10.1016/S0021-9258(19)69462-7 [CrossRef] [Google Scholar]
- Han, J., Chang, Y., Britten, M., St-Gelais, D., Champagne, C.P., Fustier, P., Lacroix, M., 2019. Interactions of phenolic compounds with milk proteins. Eur. Food Res. Technol. 245, 1881–1888. https://doi.org/10.1007/s00217-019-03293-1 [CrossRef] [Google Scholar]
- Haratifar, S., Corredig, M., 2014. Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chem. 143, 27–32. https://doi.org/10.1016/j.foodchem.2013.07.092 [CrossRef] [PubMed] [Google Scholar]
- Harbertson, J.F., Kilmister, R.L., Kelm, M.A., Downey, M.O., 2014. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation. Food Chem. 160, 16–21. https://doi.org/10.1016/j.foodchem.2014.03.026 [CrossRef] [PubMed] [Google Scholar]
- Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R., Tajmir-Riahi, H.-A., 2011. Interaction of milk α- and β-caseins with tea polyphenols. Food Chem. 126, 630–639. https://doi.org/10.1016/j.foodchem.2010.11.087 [CrossRef] [Google Scholar]
- Hemar, Y., Gerbeaud, M., Oliver, C.M., Augustin, M.A., 2011. Investigation into the interaction between resveratrol and whey proteins using fluorescence spectroscopy: Interaction between resveratrol and whey proteins. Int. J. Food Sci. Technol. 46, 2137–2144. https://doi.org/10.1111/j.1365-2621.2011.02728.x [CrossRef] [Google Scholar]
- Holt, C., Sawyer, L., 1993. Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the α S1 -, β- and κ-caseins. J Chem Soc Faraday Trans 89, 2683–2692. https://doi.org/10.1039/FT9938902683 [CrossRef] [Google Scholar]
- Huang, Lihua, Liu., Yong, Wen., Daxiang, Li., Tao, Xia., ShouZong, Tong., Xiaochun, Wan., 2002. Influence of the degree of oxidation of Qixiong polyphenols on the colour of tea broth after the addition of milk. Tea Science 22, 5. [Google Scholar]
- Huang, Zhi Wang, Jianxin, Chen., 2003. Study on Influencing Factors of Polyphenol-Protein Complex Reaction. Food Scienc 24, 4. [Google Scholar]
- Keppler, J.K., Schwarz, K., van der Goot, A.J., 2020. Covalent modification of food proteins by plantbased ingredients (polyphenols and organosulphur compounds): A commonplace reaction with novel utilization potential. Trends Food Sci. Technol. 101, 38–49. https://doi.org/10.1016/j.tifs.2020.04.023 [CrossRef] [Google Scholar]
- Kilmister, R.L., Faulkner, P., Downey, M.O., Darby, S.J., Falconer, R.J., 2016. The complexity of condensed tannin binding to bovine serum albumin – An isothermal titration calorimetry study. Food Chem. 190, 173–178. https://doi.org/10.1016/j.foodchem.2015.04.144 [CrossRef] [PubMed] [Google Scholar]
- Krekora, M., Miś, A., Nawrocka, A., 2021. Molecular interactions between gluten network and phenolic acids studied during overmixing process with application of FT-IR spectroscopy. J. Cereal Sci. 99, 103203. https://doi.org/10.1016/j.jcs.2021.103203 [CrossRef] [Google Scholar]
- Le Bourvellec, C., Renard, C.M.G.C., 2012. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 52, 213–248. https://doi.org/10.1080/10408398.2010.499808 [CrossRef] [PubMed] [Google Scholar]
- Li, Yong, Tian., Yaxuan, Yang., Weizhou, Li., Jichun, Zhao., Fuhua, Li., Jian, Ming., 2019. Advances in the characterization of plant polyphenol-protein interaction mechanisms. Food and fermentation industry 45, 7. [Google Scholar]
- Lim, C.K., Lord, G.A., 2002. Current development in LC-MS for pharmaceutical analysis. Biol. Pharm. Bull. 25, 547–557. [CrossRef] [PubMed] [Google Scholar]
- Liu, F., Ma, C., McClements, D.J., Gao, Y., 2016a. Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions. Food Hydrocoll. 61, 578–588. https://doi.org/10.1016/j.foodhyd.2016.05.031 [CrossRef] [Google Scholar]
- Liu, F., Wang, D., Ma, C., Gao, Y., 2016b. Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH. Food Hydrocoll. 58, 49–59. https://doi.org/10.1016/j.foodhyd.2016.02.011 [CrossRef] [Google Scholar]
- Luck, G., Liao, H., Murray, N.J., Grimmer, H.R., Warminski, E.E., Williamson, M.P., Lilley, T.H., Haslam, E., 1994. Polyphenols, astringency and proline-rich proteins. Phytochemistry 37, 357–371. https://doi.org/10.1016/0031-9422(94)85061-5 [CrossRef] [PubMed] [Google Scholar]
- Mcsweeney, P.L.H., 2010. The flavour of milk and dairy products: III. Cheese: taste. Int. J. Dairy Technol. 50, 123–128. [Google Scholar]
- Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y.-H., Goto, Y., Réfrégiers, M., Kardos, J., 2018. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46, W315–W322. https://doi.org/10.1093/nar/gky497 [CrossRef] [PubMed] [Google Scholar]
- Murray, Nicola, J, Williamson, Michael, P, Lilley, Terence, H, Haslam, 1994. Study of the interaction between salivary proline-rich proteins and a polyphenol by [sup1]H-NMR spectroscopy. Eur. J. Biochem. [Google Scholar]
- Najgebauer-Lejko, D., Witek, M., Żmudziński, D., Ptaszek, A., 2020. Changes in the viscosity, textural properties, and water status in yogurt gel upon supplementation with green and Pu-erh teas. J. Dairy Sci. 103, 11039–11049. https://doi.org/10.3168/jds.2020-19032 [CrossRef] [Google Scholar]
- Niu, Y., Xia, Q., Jung, W., Yu, L., 2019. Polysaccharides-protein interaction of psyllium and whey protein with their texture and bile acid binding activity. Int. J. Biol. Macromol. 126, 215–220. https://doi.org/10.1016/j.ijbiomac.2018.12.221 [CrossRef] [Google Scholar]
- Prodpran, T., Benjakul, S., Phatcharat, S., 2012. Effect of phenolic compounds on protein crosslinking and properties of film from fish myofibrillar protein. Int. J. Biol. Macromol. 51, 774–782. https://doi.org/10.1016/j.ijbiomac.2012.07.010 [CrossRef] [Google Scholar]
- Qie, X., Chen, Y., Quan, W., Wang, Z., Zeng, M., Qin, F., Chen, J., He, Z., 2020. Analysis of β- lactoglobulin–epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic– protein interactions. Food Funct. 11, 3867–3878. https://doi.org/10.1039/D0FO00627K [CrossRef] [PubMed] [Google Scholar]
- Rahimi Yazdi, S., Corredig, M., 2012. Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food Chem. 132, 1143–1149. https://doi.org/10.1016/j.foodchem.2011.11.019 [Google Scholar]
- Ramshaw, E.H., Roberts, A.V., 1990. Phenolic offflavours in Cheddar cheese. [Google Scholar]
- Rodriguez, S.D., Staszewski, M.V., Pilosof, A.M.R., 2015. Green tea polyphenols-whey proteins nanoparticles: Bulk, interfacial and foaming behavior. Food Hydrocoll. 50, 108–115. [CrossRef] [Google Scholar]
- Serafini, M., Bugianesi, R., Maiani, G., Valtuena, S., Santis, S.D., Crozier, A., 2003. Plasma antioxidants from chocolate. Nature 424, 1013. [CrossRef] [PubMed] [Google Scholar]
- Shukla, A., Narayanan, T., Zanchi, D., 2009. Structure of casein micelles and their complexation with tannins. Soft Matter 5, 2884. https://doi.org/10.1039/b903103k [CrossRef] [Google Scholar]
- Spencer, C.M., Cai, Y., Martin, R., Gaffney, S.H., Goulding, P.N., Magnolato, D., Lilley, T.H., Haslam, E., 1988. Polyphenol complexation—some thoughts and observations. Phytochemistry 27, 2397–2409. https://doi.org/10.1016/0031-9422(88)87004-3 [CrossRef] [Google Scholar]
- Sun, J., Liu, T., Zhang, F., Huang, Y., Zhang, Y., Xu, B., 2022. Tea polyphenols on emulsifying and antioxidant properties of egg white protein at acidic and neutral pH conditions. LWT 153, 112537. https://doi.org/10.1016/j.lwt.2021.112537 [CrossRef] [Google Scholar]
- Sun, X., Sarteshnizi, R.A., Udenigwe, C.C., 2022. Recent advances in protein–polyphenol interactions focusing on structural properties related to antioxidant activities. Curr. Opin. Food Sci. 45, 100840. https://doi.org/10.1016/j.cofs.2022.100840 [CrossRef] [Google Scholar]
- Urbach, G., 1997. The flavour of milk and dairy products. II. Cheese: contribution of volatile components of Manchego cheese by dynamic headspace followed by automatic thermal desorption- GC-MS. Milchwissenschaft 55, 378–382. [Google Scholar]
- van de Langerijt, T.M., O’Mahony, J.A., Crowley, S.V., 2022. The influence of sodium caseinate and β- casein concentrate on the physicochemical properties of casein micelles and the role of tea polyphenols in mediating these interactions. LWT 154, 112775. https://doi.org/10.1016/j.lwt.2021.112775 [CrossRef] [Google Scholar]
- von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E., Pilosof, A.M.R., 2012. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. J. Funct. Foods 4, 800–809. https://doi.org/10.1016/j.jff.2012.05.008 [CrossRef] [Google Scholar]
- Wang, L., Ma, Y., Cui, J., Oyeyinka, S.A., Cheng, J., He, S., 2017. Yak milk whey protein denaturation and casein micelle disaggregation/aggregation at different pH and temperature. Int. Dairy J. 71, 131–135. https://doi.org/10.1016/j.idairyj.2017.03.010 [CrossRef] [Google Scholar]
- Wang, R., Liu, Y., Hu, X., Pan, J., Gong, D., Zhang, G., 2019. New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Res. Int. 120, 226–234. https://doi.org/10.1016/j.foodres.2019.02.042 [CrossRef] [Google Scholar]
- Wu, Y., Cheng, H., Chen, Y., Chen, L., Fang, Z., Liang, L., 2017. Formation of a Multiligand Complex of Bovine Serum Albumin with Retinol, Resveratrol, and (−)-Epigallocatechin-3-gallate for the Protection of Bioactive Components. J. Agric. Food Chem. 65, 3019–3030. https://doi.org/10.1021/acs.jafc.7b00326 [CrossRef] [PubMed] [Google Scholar]
- Xiao, J., Mao, F., Yang, F., Zhao, Y., Zhang, C., Yamamoto, K., 2011. Interaction of dietary polyphenols with bovine milk proteins: Molecular structure-affinity relationship and influencing bioactivity aspects. Mol. Nutr. Food Res. 55, 1637–1645. https://doi.org/10.1002/mnfr.201100280 [CrossRef] [Google Scholar]
- Yan, Zhang, Sam, K.C., Chang, 2019. Comparative studies on ACE inhibition, degree of hydrolysis, antioxidant property and phenolic acid composition of hydrolysates derived from simulated in vitro gastrointestinal proteolysis of three thermally treated legumes. Food Chem. [Google Scholar]
- Yuan, L., Liu, M., Liu, G., Li, D., Wang, Z., Wang, B., Han, J., Zhang, M., 2017. Competitive binding of (−)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 173, 584–592. https://doi.org/10.1016/j.saa.2016.10.023 [CrossRef] [Google Scholar]
- Zhao, D., Shah, N.P., 2014. Effect of tea extract on lactic acid bacterial growth, their cell surface characteristics and isoflavone bioconversion during soymilk fermentation. Food Res. Int. 62, 877–885. https://doi.org/10.1016/j.foodres.2014.05.004 [CrossRef] [Google Scholar]
- Zhu, Hongfu, Yuan., Wanzhen, Lu., 2006. Research and application progress of NIR spectroscopy in China in recent years. Analytical instruments 10. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.