Open Access
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 02002
Number of page(s) 9
Section Precision Medicine and Drug Development and Preparation
Published online 08 May 2023
  • IACR. The latest global cancer burden data for 2020[R]. WHO, 2020. [Google Scholar]
  • Maomao C., Wanqing C. Interpretation on the global cancer statistics of GLOBOCAN 2020 [J]. Chinese Journal of the Frontiers of Medical Science(Electronic Version), 2021, 13(3):63–69. [Google Scholar]
  • Wang Y., Ma R., Liu B., et al. SNP rs17079281 decreases lung cancer risk through creating an YY1-binding site to suppress DCBLD1 expression. Oncogene. 2020;39(20):4092–4102. doi: 10.1038/s41388-020-1278-4 [CrossRef] [PubMed] [Google Scholar]
  • Khadhraoui C., Kaabachi W., Tritar F., Daghfous H., Hamzaoui K., Hamzaoui A. Association of BTLA rs1982809 polymorphism with lung cancer risk in Tunisian population. Int J Immunogenet. 2020;47(6):554–562. doi: 10.1111/iji.12491. [CrossRef] [PubMed] [Google Scholar]
  • Grando S.A. Connections of nicotine to cancer. Nat Rev Cancer. 2014;14:419–429. doi: 10.1038/nrc3725. [CrossRef] [PubMed] [Google Scholar]
  • Dasgupta P., Rizwani W., Pillai S., et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124(1):36–45. doi: 10.1002/ijc.23894. [CrossRef] [Google Scholar]
  • Heeschen C., Jang J.J., Weis M., Pathak A., Kaji S., Hu R.S., Tsao P.S., Johnson F.L., Cooke J.P. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7:833–839. doi: 10.1038/89961. [CrossRef] [PubMed] [Google Scholar]
  • Momi N., Ponnusamy M.P., Kaur S., et al. Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through a7nAChR-mediated MUC4 upregulation. Oncogene. 2013;32(11):1384–1395. doi: 10.1038/onc.2012.163. [CrossRef] [PubMed] [Google Scholar]
  • Al-Wadei M.H., Banerjee J., Al-Wadei H.A., Schuller H.M. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling. Eur J Cancer. 2016;52:188–196. doi: 10.1016/j.ejca.2015.10.003. [CrossRef] [Google Scholar]
  • Schaal C., Chellappan S.P. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res. 2014;12(1):14–23. doi: 10.1158/1541-7786.MCR-13-0541. [CrossRef] [PubMed] [Google Scholar]
  • Davis R., Rizwani W., Banerjee S., Kovacs M., Haura E., Coppola D., Chellappan S. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS One. 2009;4:e7524. doi: 10.1371/journal.pone.0007524. [Google Scholar]
  • Saccone N.L., Wang J.C., Breslau N., et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in EuropeanAmericans. Cancer Res. 2009;69(17):6848–6856. doi: 10.1158/0008-5472.CAN-09-0786. [CrossRef] [PubMed] [Google Scholar]
  • Niu X., Chen Z., Shen S., et al. Association of the CHRNA3 locus with lung cancer risk and prognosis in Chinese Han population. J Thorac Oncol. 2010;5(5):658–666. doi: 10.1097/JTO.0b013e3181d5e447. [CrossRef] [Google Scholar]
  • Reza H.A., Anamika W.J., Chowdhury M.M.K., Mostafa M.G., Uddin M.A. A cohort study on the association of MDM2 SNP309 with lung cancer risk in Bangladeshi population. Korean J Intern Med. 2020;35(3):672–681. doi: 10.3904/kjim.2018.125 [CrossRef] [PubMed] [Google Scholar]
  • Gui X.H., Qiu L.X., Zhang H.F., Zhang D.P., Zhong W.Z., Li J., Xiao Y.L. MDM2 309 T/G polymorphism is associated with lung cancer risk among Asians. Eur J Cancer. 2009 Jul;45(11):2023–2026. doi: 10.1016/j.ejca.2009.02.002. Epub 2009 Mar 4. PMID: 19264476. [CrossRef] [Google Scholar]
  • Li W., Jia M.X., Wang J.H., Lu J.L., Deng J., Tang J.X., Liu C. Association of MMP9-1562C/T and MMP13-77A/G Polymorphisms with Non-Small Cell Lung Cancer in Southern Chinese Population. Biomolecules. 2019 Mar 18;9(3):107. doi: 10.3390/biom9030107. PMID: 30889876; PMCID: PMC6468416. [CrossRef] [Google Scholar]
  • Wang, Qinchuan et al. “Genetic associations of T cell cancer immune response-related genes with T cell phenotypes and clinical outcomes of early-stage lung cancer.” Journal for immunotherapy of cancer vol. 8, 2 (2020): e000336. doi: 10.1136/jitc-2019-000336. [CrossRef] [PubMed] [Google Scholar]
  • Zhang H., Chen B., Zou Z., et al. Associations Between CAMKK1 Polymorphism rs7214723 and the Prognosis of Patients With Lung Cancer. Front Oncol. 2021;11:757484. Published 2021 Nov 19. doi: 10.3389/fonc.2021.757484. [CrossRef] [Google Scholar]
  • Hu, Lili et al. “Cytidine deaminase 435C>T polymorphism relates to gemcitabine-platinum efficacy and hematological toxicity in Chinese non-small-cell lung cancer patients.” Neoplasma vol. 68, 3 (2021): 638–644. doi: 10.4149/neo_2021_201116N1229 [Google Scholar]
  • Sone, Kazuki et al. “Genetic variation in the ATP binding cassette transporter ABCC10 is associated with neutropenia for docetaxel in Japanese lung cancer patients cohort.” BMC cancer vol. 19, 1 246. 19 Mar. 2019, doi: 10.1186/s12885-019-5438-2. [CrossRef] [PubMed] [Google Scholar]
  • Zawadzka, Izabela et al. “The impact of ABCB1 gene polymorphism and its expression on non-small-cell lung cancer development, progression and therapy - preliminary report.” Scientific reports vol. 10, 1 6188. 10 Apr. 2020, doi: 10.1038/s41598-020-63265-4. [CrossRef] [PubMed] [Google Scholar]
  • Komoto, C. et al. MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab Pharmacokinet 21, 126–132, rights and content (2006). [PubMed] [CrossRef] [PubMed] [Google Scholar]
  • Cascorbi I., et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin. Pharmacol. Ther. 2001;69:169–174. doi: 10.1067/mcp.2001.114164. [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  • Jeannesson E., et al. Determination of ABCB1 polymorphisms and haplotypes frequencies in a French population. Fundam. Clin. Pharmacol. 2007;21:411–418. doi: 10.1111/j.1472-8206.2007.00507.x. [PubMed] [CrossRef] [Google Scholar] [CrossRef] [PubMed] [Google Scholar]
  • Ameyaw M.M., et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics. 2001;11:217–221. doi: 10.1097/00008571-200104000-00005. [PubMed] [CrossRef] [Google Scholar] [CrossRef] [PubMed] [Google Scholar]
  • Zhong J., Guo Z., Fan L., et al. ABCB1 polymorphism predicts the toxicity and clinical outcome of lung cancer patients with taxane-based chemotherapy. Thorac Cancer. 2019;10(11):2088–2095. doi: 10.1111/1759-7714.13184 [CrossRef] [PubMed] [Google Scholar]
  • Truong T., Hung R.J., Amos C.I., et al. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst. 2010;102(13):959–971. doi: 10.1093/jnci/djq178 [CrossRef] [PubMed] [Google Scholar]
  • TanTai J., Shen Y., Zhao H. Quantitative assessment of the influence of common variations on 6p21 and lung cancer risk. Tumour Biol. 2014 Jan;35(1):689–694. doi: 10.1007/s13277-013-1094-3. PMID: 23959479. [CrossRef] [PubMed] [Google Scholar]
  • Yao Y., Wisniewski A., Ma Q., et al. Single Nucleotide Polymorphisms of the ERAP1 Gene and Risk of NSCLC: A Comparison of Genetically Distant Populations, Chinese and Caucasian. Arch Immunol Ther Exp (Warsz). 2016;64(Suppl 1):117–122. doi: 10.1007/s00005-016-0436-4. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.