Open Access
Issue |
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 7 | |
Section | Precision Medicine and Drug Development and Preparation | |
DOI | https://doi.org/10.1051/bioconf/20235902008 | |
Published online | 08 May 2023 |
- Larsson, D. G. J., & Flach, C.-F. (2021). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20, 1–13. https://doi.org/10.1038/s41579-021-00649-x [Google Scholar]
- Fair, R. J., & Tor, Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 6(6), PMC.S14459. https://doi.org/10.4137/pmc.s14459 [CrossRef] [Google Scholar]
- Baquero, F., Martinez, J.-L., & Canton, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. https://doi.org/10.1016/j.copbio.2008.05.006 [CrossRef] [PubMed] [Google Scholar]
- Golwala, H., Zhang, X., Iskander, S. M., & Smith, A. L. (2021). Solid waste: An overlooked source of microplastics to the environment. Science of the Total Environment, 769, 144581. https://doi.org/10.1016/j.scitotenv.2020.144581 [CrossRef] [Google Scholar]
- Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicology and Environmental Safety, 91, 1–9. https://doi.org/10.1016/j.ecoenv.2013.01.016 [CrossRef] [PubMed] [Google Scholar]
- Thiele-Bruhn, S., & Beck, I.-C. (2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 59(4), 457–465. https://doi.org/10.1016/j.chemosphere.2005.01.023 [CrossRef] [PubMed] [Google Scholar]
- Kotzerke, A., Sharma, S., Schauss, K., Heuer, H., Thiele-Bruhn, S., Smalla, K., Wilke, B.-M., & Schloter, M. (2008). Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution, 153(2), 315–322. https://doi.org/10.1016/j.envpol.2007.08.020 [CrossRef] [Google Scholar]
- Infographic - How antibiotic resistance can spread | Antimicrobial resistance. (2017, November 9). Antimicrobial Resistance. https://www.amr.gov.au/resources/infographic-how-antibiotic-resistance-can-spread [Google Scholar]
- Antibiotic resistance: How does antibiotic resistance spread? (2014, November 18). European Centre for Disease Prevention and Control. https://www.ecdc.europa.eu/en/publications-data/antibiotic-resistance-how-does-antibiotic-resistance-spread [Google Scholar]
- Understanding Antibiotic Resistance in Water: A One Health Approach | One Health | CDC. (2021, December 9). www.cdc.gov. https://www.cdc.gov/onehealth/in-action/understanding-antibiotic-resistance-in-water.html [Google Scholar]
- Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032 [CrossRef] [Google Scholar]
- Bhattacherjee, J. W., Pathak, S. P., & Gaur, A. (1988). Antibiotic resistance and metal tolerance of coliform bacteria isolated from Gomati River water at Lucknow city. The Journal of General and Applied Microbiology, 34(5), 391–399. https://doi.org/10.2323/jgam.34.391 [CrossRef] [Google Scholar]
- Huang, J.-J., Hu, H.-Y., Liu, S.-Q., Li, Y., & Tang, F. (2012). Monitoring and evaluation of antibioticresistant bacteria at a municipal wastewater treatment plant in China. Environment International, 42, 31–36. https://doi.org/10.1016/j.envint.2011.03.001 [CrossRef] [PubMed] [Google Scholar]
- Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. J. (2018). Antibiotic-Resistance Genes in Waste Water. Trends in Microbiology, 26(3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005 [CrossRef] [PubMed] [Google Scholar]
- Nagulapally, S. R., Ahmad, A., Henry, A., Marchin, G. L., Zurek, L., & Bhandari, A. (2009). Occurrence of Ciprofloxacin-, Trimethoprim-Sulfamethoxazole-, and Vancomycin-Resistant Bacteria in a Municipal Wastewater Treatment Plant. Water Environment Research, 81(1), 82–90. https://doi.org/10.2175/106143008x304596 [CrossRef] [PubMed] [Google Scholar]
- Auerbach, E. A., Seyfried, E. E., & McMahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41(5), 1143–1151. https://doi.org/10.1016/j.watres.2006.11.045 [CrossRef] [PubMed] [Google Scholar]
- Sharma, N., & Sharma, S. K. (2021). Wastewater Treatment Plants as emerging source of antibiotic resistance. Green Chemistry and Water Remediation: Research and Applications, 239–269. https://doi.org/10.1016/b978-0-12-817742-6.00008-6 [CrossRef] [Google Scholar]
- Dodd, M. C. (2012). Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring, 14(7), 1754. https://doi.org/10.1039/c2em00006g [CrossRef] [PubMed] [Google Scholar]
- Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M.-N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13(5), 310–317. https://doi.org/10.1038/nrmicro3439 [CrossRef] [PubMed] [Google Scholar]
- Manaia, C. M. (2017). Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends in Microbiology, 25(3), 173–181. https://doi.org/10.1016/j.tim.2016.11.014 [CrossRef] [PubMed] [Google Scholar]
- Shore, A. C., Deasy, E. C., Slickers, P., Brennan, G., O’Connell, B., Monecke, S., Ehricht, R., & Coleman, D. C. (2011). Detection of Staphylococcal Cassette ChromosomemecType XI Carrying Highly DivergentmecA, mecI, mecR1, blaZ, andccrGenes in Human Clinical Isolates of Clonal Complex 130 Methicillin-ResistantStaphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(8), 3765–3773. https://doi.org/10.1128/aac.00187-11 [CrossRef] [PubMed] [Google Scholar]
- Tucker, K., Stone, W., Botes, M., Feil, E. J., & Wolfaardt, G. M. (2022). Wastewater Treatment Works: A Last Line of Defense for Preventing Antibiotic Resistance Entry Into the Environment. Frontiers in Water, 4. https://doi.org/10.3389/frwa.2022.883282 [CrossRef] [Google Scholar]
- Salyers, A., & Shoemaker, N. B. (2006). Reservoirs of Antibiotic Resistance Genes. Animal Biotechnology, 17(2), 137–146. https://doi.org/10.1080/10495390600957076 [CrossRef] [PubMed] [Google Scholar]
- Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Vaz-Moreira, I., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044 [CrossRef] [PubMed] [Google Scholar]
- Zhang, X.-X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82(3), 397–414. https://doi.org/10.1007/s00253-008-1829-z [CrossRef] [PubMed] [Google Scholar]
- Berney, M., Hammes, F., Bosshard, F., Weilenmann, H.-U., & Egli, T. (2007). Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination with Flow Cytometry. Applied and Environmental Microbiology, 73(10), 3283–3290. https://doi.org/10.1128/aem.02750-06 [CrossRef] [PubMed] [Google Scholar]
- Botes, M., de Kwaadsteniet, M., & Cloete, T. E. (2012). Application of quantitative PCR for the detection of microorganisms in water. Analytical and Bioanalytical Chemistry, 405(1), 91–108. https://doi.org/10.1007/s00216-012-6399-3 [Google Scholar]
- Dang, H., Zhang, X., Song, L., Chang, Y., & Yang, G. (2007). Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. Journal of Applied Microbiology, 103(6), 2580–2592. https://doi.org/10.1111/j.1365-2672.2007.03494.x [CrossRef] [PubMed] [Google Scholar]
- Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, A. L., Lesage, G., Heran, M., & Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358–372. https://doi.org/10.1016/j.biortech.2019.03.061 [CrossRef] [PubMed] [Google Scholar]
- Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, I. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, 75–88. https://doi.org/10.4137/BBI.S12462 [CrossRef] [Google Scholar]
- Tang, J., Bu, Y., Zhang, X.-X., Huang, K., He, X., Ye, L., Shan, Z., & Ren, H. (2016). Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotoxicology and Environmental Safety, 132, 260–269. https://doi.org/10.1016/j.ecoenv.2016.06.016 [CrossRef] [PubMed] [Google Scholar]
- Li, Z., & Yang, P. (2018). Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater. IOP Conference Series: Earth and Environmental Science, 113, 012185. https://doi.org/10.1088/1755-1315/113/1/012185 [CrossRef] [Google Scholar]
- Aziz, A., Sengar, A., Basheer, F., Farooqi, I. H., & Isa, M. H. (2021). Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment - A comprehensive review. Journal of Environmental Chemical Engineering, 106423. https://doi.org/10.1016/j.jece.2021.106423 [Google Scholar]
- Aydin, S., Ince, B., & Ince, O. (2015). Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater. Water Research, 83, 337–344. https://doi.org/10.1016/j.watres.2015.07.007 [CrossRef] [PubMed] [Google Scholar]
- Alvarino, T., Suarez, S., Lema, J. M., & Omil, F. (2014). Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. Journal of Hazardous Materials, 278, 506–513. https://doi.org/10.1016/j.jhazmat.2014.06.031 [CrossRef] [PubMed] [Google Scholar]
- Shi, X., Lefebvre, O., Ng, K. K., & Ng, H. Y. (2014). Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology, 153, 79–86. https://doi.org/10.1016/j.biortech.2013.11.045 [CrossRef] [PubMed] [Google Scholar]
- Hou, J., Chen, Z., Gao, J., Xie, Y., Li, L., Qin, S., Wang, Q., Mao, D., & Luo, Y. (2019). Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Research, 159, 511–520. https://doi.org/10.1016/j.watres.2019.05.034 [CrossRef] [PubMed] [Google Scholar]
- Hou, J., Wang, C., Mao, D., & Luo, Y. (2015). The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environmental Science and Pollution Research, 23(2), 1722–1731. https://doi.org/10.1007/s11356-015-5431-5 [Google Scholar]
- Meng, L., Wang, J., Li, X., & Cui, F. (2020). Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. Ecotoxicology and Environmental Safety, 201, 110739. https://doi.org/10.1016/j.ecoenv.2020.110739 [CrossRef] [PubMed] [Google Scholar]
- D. Kappell, A.K. Kimbell, L.D. Seib, M.E. Carey, D.J. Choi, M. Kalayil, T., Fujimoto, M., H. Zitomer, D., & J. McNamara, P. (2018). Removal of antibiotic resistance genes in an anaerobic membrane bioreactor treating primary clarifier effluent at 20 °C. Environmental Science: Water Research & Technology, 4(11), 1783–1793. https://doi.org/10.1039/C8EW00270C [CrossRef] [Google Scholar]
- Zarei-Baygi, A., Wang, P., Harb, M., Stadler, L. B., & Smith, A. L. (2020). Membrane Fouling Inversely Impacts Intracellular and Extracellular Antibiotic Resistance Gene Abundances in the Effluent of an Anaerobic Membrane Bioreactor. Environmental Science & Technology, 54(19), 12742–12751. https://doi.org/10.1021/acs.est.0c04787 [CrossRef] [PubMed] [Google Scholar]
- Zarei-Baygi, A., Harb, M., Wang, P., Stadler, L. B., & Smith, A. L. (2020). Microbial community and antibiotic resistance profiles of biomass and effluent are distinctly affected by antibiotic addition to an anaerobic membrane bioreactor. Environmental Science: Water Research & Technology, 6(3), 724–736. https://doi.org/10.1039/c9ew00913b [CrossRef] [Google Scholar]
- Zarei-Baygi, A., Harb, M., Wang, P., Stadler, L. B., & Smith, A. L. (2019). Evaluating Antibiotic Resistance Gene Correlations with Antibiotic Exposure Conditions in Anaerobic Membrane Bioreactors. Environmental Science & Technology, 53(7), 3599–3609. https://doi.org/10.1021/acs.est.9b00798 [CrossRef] [PubMed] [Google Scholar]
- Ren, L., Ahn, Y., & Logan, B. E. (2014). A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment. Environmental Science & Technology, 48(7), 4199–4206. https://doi.org/10.1021/es500737m [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.