Open Access
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 02017
Number of page(s) 7
Section Precision Medicine and Drug Development and Preparation
Published online 08 May 2023
  • Al-Tuwairqi S. M., Al-Johani N. O., Simbawa E. A., 2020. Modeling dynamics of cancer radiovirotherapy. Journal of Theoretical Biology,506:110405. DOI: 10.1016/j.jtbi.2020.110405. [CrossRef] [PubMed] [Google Scholar]
  • Banerjee S., Sarkar R. R., 2008. Delay-induced model for tumor-immune interaction and control of malignant tumor growth. Biosystems, 91(1):268–288. DOI: 10.1016/j.biosystems.2007.10.002. [CrossRef] [PubMed] [Google Scholar]
  • Bashkirtseva I., Ryashko L., 2020. Analysis of noise-induced phenomena in the nonlinear tumor-immune system. Physica A: Statistical Mechanics and its Applications, 549:123923. DOI: 10.1016/j.physa.2019.123923. [CrossRef] [Google Scholar]
  • Engelborghs K., Luzyanina T., Roose D., 2002. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Transactions on Mathematical Software, 28(1):1–21. DOI: 10.1145/513001.513002. [CrossRef] [Google Scholar]
  • Kayan Ş., Merdan H., Yafia R., et al., 2017. Bifurcation Analysis of a Modified Tumor-immune System Interaction Model Involving Time Delay. Mathematical Modelling of Natural Phenomena, 12(5):120–145. DOI: 10.1051/mmnp/201712508. [CrossRef] [EDP Sciences] [Google Scholar]
  • Khajanchi S., Nieto J. J., 2019. Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 340:180–205. DOI: 10.1016/j.amc.2018.08.018. [CrossRef] [Google Scholar]
  • Kuznetsov V. A., Makalkin I. A., Taylor M. A., et al., 1994. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bulletin of Mathematical Biology, 56(2):295–321. DOI: 10.1016/s0092-8240(05)80260-5. [CrossRef] [PubMed] [Google Scholar]
  • Malinzi J., 2019. Mathematical Analysis of a Mathematical Model of Chemovirotherapy: Effect of Drug Infusion Method. Computational and Mathematical Methods in Medicine, 2019:1–16. DOI: 10.1155/2019/7576591. [CrossRef] [Google Scholar]
  • Ping B., Xiao H., 2014. Hopf bifurcation for tumor-immune competition systems with delay. Electronic Journal of Differential Equations, 2014(27): 1–13. DOI: 10.1155/2014/723159. [Google Scholar]
  • Rihan F. A., Abdel Rahman D. H., Lakshmanan S., et al., 2014. A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis. Applied Mathematics and Computation, 232:606–623. DOI: 10.1016/j.amc.2014.01.111. [CrossRef] [Google Scholar]
  • Rihan F. A., Safan M., Abdeen M. A., et al., 2012. Mathematical Modeling of Tumor cell Growth and Immune System Interactions. In: International Conference Mathematical and Computational Biology 2011. Malacca, Malaysia. pp:95–111. DOI: 10.1142/S2010194512005156. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.