Open Access
Issue
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 03013
Number of page(s) 6
Section Clinical Trials and Medical Device Monitoring
DOI https://doi.org/10.1051/bioconf/20235903013
Published online 08 May 2023
  • Ezzat, A., Zhao, P., Min, W., Li, X., & Kwoh, C. K. 2016. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(3), 1–1. DOI: 10.1109/TCBB.2016.2530062 [Google Scholar]
  • Langville, A. N., Meyer, C. D., Albright, R., Cox, J., & Duling, D. 2014. Algorithms, initializations, and convergence for the nonnegative matrix factorization. Eprint Arxiv. doi: http://dx.doi.org/ [Google Scholar]
  • Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., & Kuang, W., et al. 2017. A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information. Research in Computational Molecular Biology. Springer. [Google Scholar]
  • Mousavian, & Masoudi-Nejad. Drug-target interaction prediction via chemogenomic space: Learning-based methods. DOI: 10.1517/17425255.2014.950222 [Google Scholar]
  • Olayan, R. S., Haitham, A., & Bajic, V. B. 2018. Ddr: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics (21), 21. DOI: 10.1093/bioinformatics/btx731 [PubMed] [Google Scholar]
  • Sun, C., Cao, Y., Wei, J. M., & Liu, J. 2021. Autoencoder-based drug-target interaction prediction by preserving the consistency of chemical properties and functions of drugs. Bioinformatics. DOI: 10.1093/bioinformatics/btab384 [Google Scholar]
  • Sun, C., Xuan, P., Zhang, T., & Ye, Y. 2020. Graph convolutional autoencoder and generative adversarial network-based method for predicting drug-target interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, PP(99), 1–1. DOI: 10.1016/j.patcog.2021.108095 [Google Scholar]
  • Tapio, P., Antti, A., Sami, P., Sushil, S., Agnieszka, S., & Tang, J., et al. 2015. Toward more realistic drug-target interaction predictions. Briefings in Bioinformatics (2), 325–337. DOI: 10.1093/bib/bbu010 [PubMed] [Google Scholar]
  • Twan, V. L., Nabuurs, S. B., & Elena, M. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics (21), 3036. DOI: 10.1093/bioinformatics/btr500 [Google Scholar]
  • Xing, Chen, Clarence, C., Yan, Xiaotian, & Zhang, et al. 2016. Drug-target interaction prediction: databases, web servers and computational models. Briefings in bioinformatics. DOI: 10.1093/bib/bbv066 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.